Quantum weak coin flipping with arbitrarily small bias¹

"where weakness is a virtue", or

"how to reduce instead of abort"

Portugal Crypto Day 13/12/2024

¹Atul S. Arora, Jérémie Roland and Chrysoula Vlachou, ACM SIAM SODA 2021, pp. 919-938. See also https://ia.cr/2022/1101.

Coin flipping (over the telephone)³

Two distrustful parties, Alice and Bob, wish to remotely generate an unbiased random bit.

Strong Coin Flipping (SCF)

The parties do not know a priori each other's preferred outcome

Weak Coin Flipping (WCF)

The parties have a priori known opposite preferred outcomes

Security: neither player can force their desired outcome with $P \ge \frac{1}{2} + \epsilon$.

Quantum WCF is the strongest known S2PC primitive with unconditional security

*Optimal protocols for SCF, BC and OT²

²A. Chailloux and I. Kerenidis, IEEE FOCS 2009, pp. 527-533 and IEEE FOCS 2011, pp. 354-362, A. Chailloux, G. Gutoski and J. Sikora, CJTCS 2016, no 13. ³M. Blum, SIGACT News 15.1, 23-27 (1983).

Quantum WCF protocols

Creation of quantum correlations towards an honest state

Variables involved: ρ, U

 ${\rm Two}~{\rm SDPs}$

- P_A^* is an SDP in ρ_B : $P_A^* = \max(\operatorname{tr}(\Pi_A \rho_B))$ s.t. the honest player (Bob) follows the protocol.
- Similarly for P_B^* .

Dual: $\rho \leftrightarrow Z$, max \leftrightarrow min, $P^* = \max \leftrightarrow P^* \leq$ certificate

▲□▶▲□▶▲□▶▲□▶ □ のQで

A *new framework* is needed permitting us to find *both* the protocol and its bias.

Time-dependent point games (TDPG)⁴

Sequence of frames including points on x - y plane with probability weights

- Initial points: (0, 1) and (1, 0) with p = 1/2.
- Transitions between frames:

$$\sum_{z} p_{z} = \sum_{z'} p_{z'} \text{ probability conservation}$$

$$\sum_{z} \frac{\lambda z}{\lambda + z} p_{z} \le \sum_{z'} \frac{\lambda z'}{\lambda + z'} p_{z'}, \forall \lambda \ge 0 \text{ monotonicity}$$

Final point (β, α) with p = 1.

Theorem. TDPG^{!!!} \Leftrightarrow WCF protocol with $P_A^* \leq \alpha, P_B^* \leq \beta$.

Time-Independent Point Games (TIPG)⁶ Simplifying the formalism⁷

Instead of the entire sequence of frames we can only consider suitably^{!!!} constructed initial and final frame.

Theorem. TIPG^{!!!} \Leftrightarrow TDPG^{!!!} with the same final frame.

Family of TIPG approaching bias⁵

$$\epsilon(k) = \frac{1}{4k+2}, k \in \mathbb{N}$$

Existence of WCF protocols with $\epsilon \rightarrow 0$

⁵2*k*: number of points involved in the main move of the point game. ⁶C. Mochon, arXiv:0711.4114 (2007)

⁷Trading matrix for real number constraints; verifying matrix inequalities for all transitions is hard.

Equivalent frameworks and the proof of existence⁸

⁸C. Mochon, arXiv:0711.4114 (2007) and D. Aharonov, A. Chailloux, M. Ganz, I. Kerenidis and L. Magnin, SIAM J Comp 45.3, 633-679 (2016).

TDPG-to-Explicit-Protocol Framework (TEF)9

TDPG^{!!!} \rightarrow WCF protocol given that for every transition, a unitary U satisfying certain constraints can be found.

Explicit protocol with $\epsilon = \frac{1}{10}$

9A. S. Arora, J. Roland and S. Weis, ACM SIGACT STOC 2019, pp 205-216. = 🤊 🤉

The Elliptic Monotone Align (EMA) Algorithm¹⁰ Numerical solution

TEF constraint for each transition as a containment of ellipsoids

The curvature condition at the point of contact is an instance of the same problem with one less dimension, allowing us to iteratively find U.

¹⁰A. S. Arora, J. Roland and S. Weis, ACM SIGACT STOC 2019, pp 205-216.

Geometric analytic solution¹¹

- Consider isometries instead of unitaries
- Restrict to Mochon's family of TIPGs
- Contact and component conditions must hold at all iterations
- Expressed in terms of the initial value
- Proof by induction

Solution by Iteration:

$$Q^{\overline{k}} = |u_h^{\overline{k}}\rangle \langle u_g^{\overline{k}}| + Q^{\overline{k-1}}$$

¹¹A. S. Arora, J. Roland and CV, see https://ia.cr/2022/1101.

Algebraic solution¹²

Translating the geometric properties to the algebraic properties of Mochon's assignment

If we find *O* satisfying the TEF constraints we have a protocol.

12A. S. Arora, J. Roland and CV, ACM SIAM SODA 2021, pp. 919-938.

Geometric vs Algebraic

- ► G: intuitive, "constructive" and pedagogical
- ► G: cumbersome and very technical¹³
- A: Neat and much less technical (albeit not intuitive)
- A: Significant simplification of the formalism
 - ▶ TEF and $O \rightarrow$ Protocol
 - ► TEF=TIPG^{!!!}=TDPG^{!!!} → bypassing part of the non-constructive part

・ロト・ (目)・ (目)・ (目)・ (の)へ()

Elegance vs Intuition

¹³infinite curvatures, ill-defined vectors, etc.

Open questions

...well, some of them (the "classical" ones)

- Protocols for other families of TIPGs¹⁴?
- Given the bound $\Omega(1/\sqrt{\epsilon})$ on the rounds of communication¹⁵, can we find protocols matching on resources?
- Optimization of our constructions (number of points, memory and register's size)
- Composability of WCF¹⁶.
- A fundamental connection: does optimal SCF imply WCF with $\epsilon \rightarrow 0$?

¹⁴P. Høyer and E. Pelchat, MA thesis, University of Calgary (2013).
¹⁵C. A. Miller, 52nd ACM SIGACT STOC, pp. 916-929 (2020).
¹⁶J. Wu, Y. Hu, A. Bansal, M. Tomamichel, arXiv:2402.15233 (2024); A Rest in the second statement of the second