
Curl: Private LLMs through
Wavelet-Encoded Look-Up Tables

Manuel B. Santos1, Dimitris Mouris1, Mehmet Ugurbil1, Stanislaw Jarecki1,2,
José Reis1, Shubho Sengupta3 and Miguel de Vega1

{ manuel.santos, dimitris, memo, stanislaw.jarecki, jose.reis, miguel }@nillion.com

ssengupta@meta.com

Portugal Crypto Day December 13, 2024, Lisbon

https://ia.cr/2024/1127

https://github.com/jimouris/curl

1 2 3

https://ia.cr/2024/1127

Secure Multiparty Computation (MPC)

MPC enables computing
directly on private data!

2

Secure Multiparty Computation (MPC)

MPC enables computing
directly on private data!

3

Secure Multiparty Computation (MPC) The data remain
private. The servers

cannot see it.

MPC enables computing
directly on private data!

4

Secure Multiparty Computation (MPC) The data remain
private. The servers

cannot see it.

MPC enables computing
directly on private data!

5
Threshold Signatures

Secure Multiparty Computation (MPC) The data remain
private. The servers

cannot see it.

MPC enables computing
directly on private data!

6
Threshold SignaturesPrivacy-preserving ML

MPC

7

Three users want to compute the
sum of their private inputs.

MPC

8

Three users want to compute the
sum of their private inputs.

13

5

7

MPC

9

Three users want to compute the
sum of their private inputs.

4

9

13

5

7

Each user secret shares their input
into random looking numbers.

(E.g.,: 4 and 9 reveal nothing about 13)

MPC

10

Servers
maintain a

private sum

Three users want to compute the
sum of their private inputs.

4

9

13

5

7

4

9

Each user secret shares their input
into random looking numbers.

(E.g.,: 4 and 9 reveal nothing about 13)

MPC

11

Servers
maintain a

private sum

Three users want to compute the
sum of their private inputs.

2

3

13

5

7

6

12

Each user secret shares their input
into random looking numbers.

(E.g.,: 4 and 9 reveal nothing about 13)

MPC

12

Servers
maintain a

private sum

Three users want to compute the
sum of their private inputs.

13

5

7

Each user secret shares their input
into random looking numbers.

(E.g.,: 4 and 9 reveal nothing about 13)

12

13

6

1

MPC

13

Servers
maintain a

private sum

Three users want to compute the
sum of their private inputs.

13

5

7

25
Each user secret shares their input
into random looking numbers.

(E.g.,: 4 and 9 reveal nothing about 13)

12

13

MPC

14

Three users want to compute the
sum of their private inputs.

13

5

7

Each user secret shares their input
into random looking numbers.

(E.g.,: 4 and 9 reveal nothing about 13)

Multiplication can be
computed similarly!

MPC

15

Three users want to compute the
sum of their private inputs.

13

5

7

Each user secret shares their input
into random looking numbers.

(E.g.,: 4 and 9 reveal nothing about 13)

Multiplication can be
computed similarly!

MPC for Machine Learning

Using Addition and Multiplication
we can do ML inference!

16

Three users want to compute the
sum of their private inputs.

13

5

7

Each user secret shares their input
into random looking numbers.

(E.g.,: 4 and 9 reveal nothing about 13)

MPC for Machine Learning

Using Addition and Multiplication
we can do ML inference!

MPC

Server 1 Server 2

Multiplication can be
computed similarly!

MPC

17

Three users want to compute the
sum of their private inputs.

13

5

7

Each user secret shares their input
into random looking numbers.

(E.g.,: 4 and 9 reveal nothing about 13)

Multiplication can be
computed similarly!

MPC for Machine Learning

Server 1 Server 2

Using Addition and Multiplication
we can do ML inference!

MPC

18

Three users want to compute the
sum of their private inputs.

13

5

7

Each user secret shares their input
into random looking numbers.

(E.g.,: 4 and 9 reveal nothing about 13)

Multiplication can be
computed similarly!

MPC for Machine Learning

Server 1 Server 2

Using Addition and Multiplication
we can do ML inference!

MPC

19

Three users want to compute the
sum of their private inputs.

13

5

7

Each user secret shares their input
into random looking numbers.

(E.g.,: 4 and 9 reveal nothing about 13)

Multiplication can be
computed similarly!

MPC for Machine Learning

Server 1 Server 2

Using Addition and Multiplication
we can do ML inference!

MPC

20

Three users want to compute the
sum of their private inputs.

13

5

7

Each user secret shares their input
into random looking numbers.

(E.g.,: 4 and 9 reveal nothing about 13)

Multiplication can be
computed similarly!

MPC for Machine Learning

Server 1 Server 2

Using Addition and Multiplication
we can do ML inference!

Almost

Non-Linear Functions in MPC

MPC protocols cannot evaluate non-linearities directly!

21

Non-Linear Functions in MPC

MPC protocols cannot evaluate non-linearities directly!

→Boolean (aka garbled) circuits can be used but are big
and expensive.

22

Non-Linear Functions in MPC

MPC protocols cannot evaluate non-linearities directly!

→Boolean (aka garbled) circuits can be used but are big
and expensive.

23

→Polynomial Approximations can be used but are slow (high
communication) and introduce big approximation errors.

Non-Linear Functions in MPC

MPC protocols cannot evaluate non-linearities directly!

→Boolean (aka garbled) circuits can be used but are big
and expensive.

SOTA MPC protocols evaluate non-linearities as lookup tables (LUTs), but

LUTs scale poorly for high precision → very high communication

24

→Polynomial Approximations can be used but are slow (high
communication) and introduce big approximation errors.

The Curl Framework

● Construct smaller LUTs without sacrificing accuracy
○ Using Discrete Wavelet Transforms (DWT)

25

The Curl Framework

● Construct smaller LUTs without sacrificing accuracy
○ Using Discrete Wavelet Transforms (DWT)

● MPC-tailored protocols for evaluating DWT LUTs:
○ Haar DWT: faster, higher errors
○ Biorthogonal DWT: slower, lower errors

26

The Curl Framework

● Construct smaller LUTs without sacrificing accuracy
○ Using Discrete Wavelet Transforms (DWT)

● MPC-tailored protocols for evaluating DWT LUTs:
○ Haar DWT: faster, higher errors
○ Biorthogonal DWT: slower, lower errors

● Experiments over a suite of commonly used non-linear functions + LLMs.

27

log 1
log 2
log 3
log 4
log 5

Secure Look-Up Table
Server 1Dealer

Server 2

log 1
log 2
log 3
log 4
log 5

Secure Look-Up Table
Server 1Dealer

Server 2

Public
LUT for

log

0
1

1.6
2

2.3

log 1
log 2
log 3
log 4
log 5

Secure Look-Up Table
Server 1Dealer

Server 2

Public
LUT for

log

0
1

1.6
2

2.3

Secret Input
x = 4

log 1
log 2
log 3
log 4
log 5

Secure Look-Up Table
Server 1Dealer

Server 2

Public
LUT for

log

0
1

1.6
2

2.3

Secret Input
x = 4

log 1
log 2
log 3
log 4
log 5

Secure Look-Up Table
Server 1Dealer

Server 2

Public
LUT for

log

0
1

1.6
2

2.3

Secret Input
x = 4

 Input
[x] = 3

 Input
[x] = 1

log 1
log 2
log 3
log 4
log 5

Secure Look-Up Table
Server 1Dealer

Server 2

Public
LUT for

log

0
1

1.6
2

2.3

Secret Input
x = 4

 Input
[x] = 3

 Input
[x] = 1

Random
r ← 2

log 1
log 2
log 3
log 4
log 5

Secure Look-Up Table
Server 1Dealer

Server 2

Public
LUT for

log

0
1

1.6
2

2.3

Secret Input
x = 4

 Input
[x] = 3

 Input
[x] = 1

Random
r ← 2

[r] = -2

[r] = 4

log 1
log 2
log 3
log 4
log 5

Secure Look-Up Table
Server 1Dealer

Server 2

Public
LUT for

log

0
1

1.6
2

2.3

Secret Input
x = 4

 Input
[x] = 3

 Input
[x] = 1

Random
r ← 2

[r] = -2

[r] = 4

0
1
0
0
0

1-hot vector
encoding r

log 1
log 2
log 3
log 4
log 5

Secure Look-Up Table
Server 1Dealer

Server 2

Public
LUT for

log

0
1

1.6
2

2.3

Secret Input
x = 4

 Input
[x] = 3

 Input
[x] = 1

Random
r ← 2

[r] = -2

[r] = 4

0
1
0
0
0

1-hot vector
encoding r

[0]
[1]
[0]
[0]
[0]

[0]
[1]
[0]
[0]
[0]

Shares of
1-hot vector
encoding r

log 1
log 2
log 3
log 4
log 5

Secure Look-Up Table
Server 1Dealer

Server 2

Public
LUT for

log

0
1

1.6
2

2.3

Secret Input
x = 4

 Input
[x] = 3

 Input
[x] = 1

Random
r ← 2

[r] = -2

[r] = 4

0
1
0
0
0

1-hot vector
encoding r

[0]
[1]
[0]
[0]
[0]

[0]
[1]
[0]
[0]
[0]

Shares of
1-hot vector
encoding r

Compute rotation
[δ] = [x] - [r] = 5

Compute rotation
[δ] = [x] - [r] = -3

log 1
log 2
log 3
log 4
log 5

Secure Look-Up Table
Server 1Dealer

Server 2

Public
LUT for

log

0
1

1.6
2

2.3

Secret Input
x = 4

 Input
[x] = 3

 Input
[x] = 1

Random
r ← 2

[r] = -2

[r] = 4

0
1
0
0
0

1-hot vector
encoding r

[0]
[1]
[0]
[0]
[0]

[0]
[1]
[0]
[0]
[0]

Shares of
1-hot vector
encoding r

Compute rotation
[δ] = [x] - [r] = 5

Compute rotation
[δ] = [x] - [r] = -3

Communicate
to reveal
δ = 5-3 = 2

log 1
log 2
log 3
log 4
log 5

Secure Look-Up Table
Server 1Dealer

Server 2

Public
LUT for

log

0
1

1.6
2

2.3

Secret Input
x = 4

 Input
[x] = 3

 Input
[x] = 1

Random
r ← 2

[r] = -2

[r] = 4

0
1
0
0
0

1-hot vector
encoding r

[0]
[1]
[0]
[0]
[0]

[0]
[1]
[0]
[0]
[0]

Shares of
1-hot vector
encoding r

Communicate
to reveal
δ = 5-3 = 2

Rotated
by δ

1.6
2

2.3
0
1

log 1
log 2
log 3
log 4
log 5

Secure Look-Up Table
Server 1Dealer

Server 2

Public
LUT for

log

0
1

1.6
2

2.3

Secret Input
x = 4

 Input
[x] = 3

 Input
[x] = 1

Random
r ← 2

[r] = -2

[r] = 4

0
1
0
0
0

1-hot vector
encoding r

[0]
[1]
[0]
[0]
[0]

[0]
[1]
[0]
[0]
[0]

Shares of
1-hot vector
encoding r

Rotated
by δ

1.6
2

2.3
0
1

log 1
log 2
log 3
log 4
log 5

Secure Look-Up Table
Server 1Dealer

Server 2

Public
LUT for

log

0
1

1.6
2

2.3

Secret Input
x = 4

 Input
[x] = 3

 Input
[x] = 1

Random
r ← 2

[r] = -2

[r] = 4

0
1
0
0
0

1-hot vector
encoding r

[0]
[1]
[0]
[0]
[0]

[0]
[1]
[0]
[0]
[0]

Shares of
1-hot vector
encoding r

Rotated
by δ

1.6
2

2.3
0
1

[0]
[2]
[0]
[0]
[0]

[0]
[2]
[0]
[0]
[0]

log 1
log 2
log 3
log 4
log 5

Secure Look-Up Table
Server 1Dealer

Server 2

Public
LUT for

log

0
1

1.6
2

2.3

Secret Input
x = 4

 Input
[x] = 3

 Input
[x] = 1

Random
r ← 2

[r] = -2

[r] = 4

0
1
0
0
0

1-hot vector
encoding r

[0]
[1]
[0]
[0]
[0]

[0]
[1]
[0]
[0]
[0]

Shares of
1-hot vector
encoding r

Rotated
by δ

1.6
2

2.3
0
1

[0]
[2]
[0]
[0]
[0]

[0]
[2]
[0]
[0]
[0]

[2]

[2]

log 1
log 2
log 3
log 4
log 5

Secure Look-Up Table
Server 1Dealer

Server 2

Public
LUT for

log

0
1

1.6
2

2.3

Secret Input
x = 4

 Input
[x] = 3

 Input
[x] = 1

Random
r ← 2

[r] = -2

[r] = 4

0
1
0
0
0

1-hot vector
encoding r

[0]
[1]
[0]
[0]
[0]

[0]
[1]
[0]
[0]
[0]

Shares of
1-hot vector
encoding r

Rotated
by δ

1.6
2

2.3
0
1

[0]
[2]
[0]
[0]
[0]

[0]
[2]
[0]
[0]
[0]

[2]

[2]

Secret
Output = 2

Discrete Wavelet Transform (DWT)

Initial signal s

44

Discrete Wavelet Transform (DWT)

Initial signal s

45

Discrete Wavelet Transform (DWT)

Initial signal s

46

Discrete Wavelet Transform (DWT)

Initial signal s

47

Discrete Wavelet Transform (DWT)

Initial signal s

48
Smooth part of s remains unchanged!

Discrete Wavelet Transform (DWT)

Initial signal s

49
Smooth part of s remains unchanged! Details can be set to zero!

Discrete Wavelet Transform (DWT)

Initial signal s

50
Smooth part of s remains unchanged! Details can be set to zero!

Approximation Strategies

51

Goal: Evaluate y = LUT(x) for W bits (e.g. 32)

Approximation Strategies

52

Goal: Evaluate y = LUT(x) for W bits (e.g. 32)
Approximate

Approximation Strategies

53

Goal: Evaluate y = LUT(x) for W bits (e.g. 32)
Approximate

0) Direct Evaluation0) Direct Evaluation LUT

(W bits)

x
(W bits)

y
(W bits)

Approximation Strategies

54

Goal: Evaluate y = LUT(x) for W bits (e.g. 32)
Approximate

0) Direct Evaluation0) Direct Evaluation LUT

(W bits)

x
(W bits)

y
(W bits)

High runtime (232)

Approximation Strategies

55

Goal: Evaluate y = LUT(x) for W bits (e.g. 32)
Approximate

0) Direct Evaluation0) Direct Evaluation LUT

(W bits)

x
(W bits)

y
(W bits)

High runtime (232)

1) Quantization/Truncation
x

(W bits)
y

(W/2 bits)

Truncated
LUT

(W/2 bits)

MSB
(W/2 bits)

Approximation Strategies

56

Goal: Evaluate y = LUT(x) for W bits (e.g. 32)
Approximate

0) Direct Evaluation0) Direct Evaluation LUT

(W bits)

x
(W bits)

y
(W bits)

High runtime (232)

1) Quantization/Truncation
x

(W bits)
y

(W/2 bits)

Truncated
LUT

(W/2 bits)

MSB
(W/2 bits)

y is only W/2 bits!

Approximation Strategies

57

Approximation Strategies

58

2) Haar DWT x
(W bits)

y
(W bits)

DWT LUT

(W/2 bits)

MSB
(W/2 bits)

Approximation Strategies

59

2) Haar DWT x
(W bits)

y
(W bits)

DWT LUT

(W/2 bits)

MSB
(W/2 bits)

DWT-encoded LUTs!

Approximation Strategies

60

2) Haar DWT x
(W bits)

y
(W bits)

DWT LUT

(W/2 bits)

MSB
(W/2 bits)

DWT-encoded LUTs!

y is W bits!

Better approx.!

Approximation Strategies

61

2) Haar DWT x
(W bits)

y
(W bits)

DWT LUT

(W/2 bits)

MSB
(W/2 bits)

DWT-encoded LUTs!

y is W bits!

Better approx.!

3) Biorthogonal
 DWT

Approximation Strategies

62

2) Haar DWT x
(W bits)

y
(W bits)

DWT LUT

(W/2 bits)

MSB
(W/2 bits)

DWT-encoded LUTs!

y is W bits!

Better approx.!

3) Biorthogonal
 DWT

x
(W bits)

y
(W bits)

DWT LUT

(W/2 bits)

LSB
(W/2 bits)

MSB
(W/2 bits)

Inner Product

Linear Transform

Approximation Strategies

63

2) Haar DWT x
(W bits)

y
(W bits)

DWT LUT

(W/2 bits)

MSB
(W/2 bits)

DWT-encoded LUTs!

y is W bits!

Better approx.!

3) Biorthogonal
 DWT

x
(W bits)

y
(W bits)

DWT LUT

(W/2 bits)

LSB
(W/2 bits)

MSB
(W/2 bits)

Inner Product

Linear Transform

2 LUT evaluations +

linear transforms →

higher accuracy

Evaluations: Approximations

64

Square Root Inverse Square Root

→ Lower errors than CrypTen

→ Faster for LUTs < 27

Evaluations: Approximations

65

Square Root Inverse Square Root

→ Lower errors than CrypTen

→ Faster for LUTs < 27

Evaluations: Approximations

66

Square Root Inverse Square Root

→ Lower errors than CrypTen

→ Faster for LUTs < 27

Curl CrypTenFunction
s

Evaluations: Running LLMs in seconds

67

Evaluations: Running LLMs in seconds

68

Sequence length = 64

Evaluations: Running LLMs in seconds

69

Sequence length = 64

BERT Base
(seq. len = 128)

Evaluations: Running LLMs in seconds

70

Sequence length = 64

BERT Base
(seq. len = 128)

Fastest runtime

Evaluations: Running LLMs in seconds

71

Sequence length = 64

BERT Base
(seq. len = 128)

Fastest runtime

Fewer Rounds

Evaluations: Running LLMs in seconds

72

Sequence length = 64

BERT Base
(seq. len = 128)

Fastest runtime

Fewer Rounds

Lowest

Communication

Conclusions

73

Conclusions

74

● Lookup Tables (LUTs) can be used to evaluate non-linear functions in MPC

○ LUTs scale poorly for high precision → enormous communication.

○ Polynomial approximations and quantization yield low accuracy!

Conclusions

75

● Lookup Tables (LUTs) can be used to evaluate non-linear functions in MPC

○ LUTs scale poorly for high precision → enormous communication.

○ Polynomial approximations and quantization yield low accuracy!

● Curl: smaller LUTs without sacrificing accuracy

○ Using Discrete Wavelet Transforms (DWT) → low communication

○ Reduced LUT sizes → high accuracy

○ Run LLMs (BERT Tiny/Base/Large, GPT-2, GPT Neo) → in seconds!

Conclusions

76

● Lookup Tables (LUTs) can be used to evaluate non-linear functions in MPC

○ LUTs scale poorly for high precision → enormous communication.

○ Polynomial approximations and quantization yield low accuracy!

● Curl: smaller LUTs without sacrificing accuracy

○ Using Discrete Wavelet Transforms (DWT) → low communication

○ Reduced LUT sizes → high accuracy

○ Run LLMs (BERT Tiny/Base/Large, GPT-2, GPT Neo) → in seconds!

● Curl’s technique can enhance related works:

○ FHE, Ripple [1]

○ FSS, Wave Hello to Privacy [2]

Conclusions

77

● Lookup Tables (LUTs) can be used to evaluate non-linear functions in MPC

○ LUTs scale poorly for high precision → enormous communication.

○ Polynomial approximations and quantization yield low accuracy!

● Curl: smaller LUTs without sacrificing accuracy

○ Using Discrete Wavelet Transforms (DWT) → low communication

○ Reduced LUT sizes → high accuracy

○ Run LLMs (BERT Tiny/Base/Large, GPT-2, GPT Neo) → in seconds!

● Curl’s technique can enhance related works:

○ FHE, Ripple [1]

○ FSS, Wave Hello to Privacy [2]

[1] C. Gouert, M. Ugurbil, D. Mouris, M. de Vega, and N. G. Tsoutsos. Ripple: Accelerating Programmable Bootstraps for FHE with Wavelet Approximations. In

International Conference on Information Security (ISC), 2024.

[2] J. Reis, M. Ugurbil, S. Wagh, R. Henry, M. de Vega. Wave Hello to Privacy: Efficient Mixed-Mode MPC using Wavelet Transforms, accepted to PoPETs 2025.

Curl: Private LLMs through
Wavelet-Encoded Look-Up Tables

Manuel B. Santos1, Dimitris Mouris1, Mehmet Ugurbil1, Stanislaw Jarecki1,2,
José Reis1, Shubho Sengupta3 and Miguel de Vega1

{ manuel.santos, dimitris, memo, stanislaw.jarecki, jose.reis, miguel }@nillion.com

ssengupta@meta.com

Portugal Crypto Day December 13, 2024, Lisbon

https://ia.cr/2024/1127

https://github.com/jimouris/curl

1 2 3

https://ia.cr/2024/1127

