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Non-Linear Functions in MPC

MPC protocols cannot evaluate non-linearities directly!

→Boolean (aka garbled) circuits can be used but are big 
and expensive.

SOTA MPC protocols evaluate non-linearities as lookup tables (LUTs), but 

LUTs scale poorly for high precision → very high communication
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The Curl Framework

● Construct smaller LUTs without sacrificing accuracy
○ Using Discrete Wavelet Transforms (DWT)

● MPC-tailored protocols for evaluating DWT LUTs:
○ Haar DWT: faster, higher errors 
○ Biorthogonal DWT: slower, lower errors 

● Experiments over a suite of commonly used non-linear functions + LLMs.
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