Curl: Private LLMs through Wavelet-Encoded Look-Up Tables

Manuel B. Santos¹, Dimitris Mouris¹, Mehmet Ugurbil¹, Stanislaw Jarecki^{1,2}, José Reis¹, Shubho Sengupta³ and Miguel de Vega¹

{ manuel.santos, dimitris, memo, stanislaw.jarecki, jose.reis, miguel }@nillion.com

ssengupta@meta.com

MPC enables computing directly on private data!

Threshold Signatures

Each user **secret shares** their input into random looking numbers.

Each user **secret shares** their input into random looking numbers.

(E.g.,: 4 and 9 reveal nothing about 13)

Servers

maintain a

MPC

Three users want to compute the **sum** of their **private inputs**.

Each user **secret shares** their input into random looking numbers.

Each user **secret shares** their input into random looking numbers.

MPC

Three users want to compute the **sum** of their **private inputs**.

Each user **secret shares** their input into random looking numbers.

Each user **secret shares** their input into random looking numbers.

Three users want to compute the **sum** of their **private inputs**.

Each user **secret shares** their input into random looking numbers.

(E.g.,: 4 and 9 reveal nothing about 13)

13
5

Multiplication can be

computed similarly!

Using **Addition** and **Multiplication** we can do ML inference!

Three users want to compute the **sum** of their **private inputs**.

Each user **secret shares** their input into random looking numbers.

(E.g.,: 4 and 9 reveal nothing about 13)

13
5

Multiplication can be

computed similarly!

Using **Addition** and **Multiplication** we can do ML inference!

Private model

MPC protocols cannot evaluate **non-linearities** directly!

MPC protocols cannot evaluate **non-linearities** directly!

 \rightarrow Boolean (aka garbled) circuits can be used but are big and expensive.

MPC protocols cannot evaluate **non-linearities** directly!

 \rightarrow Boolean (aka garbled) circuits can be used but are big and expensive.

→Polynomial Approximations can be used but are slow (high communication) and introduce big approximation errors.

MPC protocols cannot evaluate **non-linearities** directly!

→Boolean (aka garbled) circuits can be used but are big and expensive.

→Polynomial Approximations can be used but are slow (high communication) and introduce big approximation errors.

SOTA MPC protocols evaluate non-linearities as lookup tables (LUTs), but LUTs scale poorly for high precision \rightarrow very high communication

The Curl Framework

- Construct smaller LUTs without sacrificing accuracy
 - Using Discrete Wavelet Transforms (DWT)

The Curl Framework

- Construct smaller LUTs without sacrificing accuracy
 - Using Discrete Wavelet Transforms (DWT)
- MPC-tailored protocols for evaluating DWT LUTs:
 - Haar DWT: faster, higher errors
 - Biorthogonal DWT: slower, lower errors

The Curl Framework

- Construct smaller LUTs without sacrificing accuracy
 - Using Discrete Wavelet Transforms (DWT)
- MPC-tailored protocols for evaluating DWT LUTs:
 - Haar DWT: faster, higher errors
 - Biorthogonal DWT: slower, lower errors
- Experiments over a suite of commonly used non-linear functions + LLMs.

Dealer

Dealer

Server 1

Secret Input x = 4

0 Public 1 LUT for 1.6 2 2.3

log

Secret Input **x = 4**

Dealer

Input **[x] = 3**

Server 2

Smooth part of **s** remains unchanged!

Smooth part of **s** remains unchanged!

Details can be set to zero!

Smooth part of **s** remains unchanged!

Details can be set to zero!

Goal: Evaluate y = LUT(x) for W bits (e.g. 32)

Goal: Evaluate y = LUT(x) for W bits (e.g. 32)

Goal: Evaluate y = LUT(x) for W bits (e.g. 32)

o) Direct Evaluation

3) Biorthogonal DWT

Evaluations: Approximations

Evaluations: Approximations

 2^4

 2^{6}

 2^{6}

0.11

0.14

0.09

4

30

4

2.60e-3

2.61e-3

2.6

47.7

2.6 1.54e-1

5.02e-2

5.48e-3

1.18e-1

N/A

(-4, 4)

(-64, 64)

(-64, 64)

Fig. 7

App. B.2

Fig. 7

GeLU

SiLU

65

Evaluations: Approximations

Sequence length = 64	Model	Latency (s)	Rounds	Com. (GB)
	BERT Tiny	3.55	409	1.34
	BERT Base	13.63	$1,\!629$	2.8
	BERT Large	33.93	3,093	5.66
	GPT-2	16.61	$1,\!630$	3.77
	GPT-Neo	103.4	$3,\!118$	14.9

Sequence length = 64	Model	Latency (s)	Rounds	Com. (GB)
	BERT Tiny	3.55	409	1.34
	BERT Base	13.63	$1,\!629$	2.8
	BERT Large	33.93	3,093	5.66
	GPT-2	16.61	$1,\!630$	3.77
	GPT-Neo	103.4	$3,\!118$	14.9
BERT Base				
(seq. len = 128)	Framework	Latency (s)) Rounds	Com. (GB)
	Iron <u>[35]</u>	475	$13,\!663$	281
	MPCFormer [47	55.3		12.1
	Puma [21]	33.9	_	10.8
	Bolt [57]	185	10,509	59.6
	Bolt (WE) [57]	† 91	10,901	25.7

Curl

[†] In Bolt, WE stands for word elimination.

22.5

1,629

5.7

Sequence length = 64	Model	Latency (s)	Rounds	Com. (GB)
	BERT Tiny	3.55	409	1.34
	BERT Base	13.63	$1,\!629$	2.8
	BERT Large	33.93	3,093	5.66
	GPT-2	16.61	$1,\!630$	3.77
	GPT-Neo	103.4	$3,\!118$	14.9
BERT Base				
(seq. len = 128)	Framework	Latency (s)) Rounds	Com. (GB)
(seq. len = 128)	Framework	Latency (s) 475) Rounds	Com. (GB) 281
(seq. len = 128)	Framework Iron <u>[35]</u> MPCFormer <u>[47</u>	Latency (s) 475 55.3) Rounds 13,663 –	Com. (GB) 281 12.1
(seq. len = 128)	Framework Iron <u>[35]</u> MPCFormer <u>[47</u> Puma <u>[21]</u>	Latency (s) 475 55.3 33.9) Rounds 13,663 _ _	Com. (GB) 281 12.1 10.8
(seq. len = 128) Fastest runtime	Framework Iron [35] MPCFormer [47] Puma [21] Bolt [57]	Latency (s) 475 55.3 33.9 185) Rounds 13,663 - - 10,509	Com. (GB) 281 12.1 10.8 59.6
(seq. len = 128) Fastest runtime	Framework Iron [35] MPCFormer [47] Puma [21] Bolt [57] Bolt (WE) [57]	Latency (s) 475 55.3 33.9 185 † 91) Rounds 13,663 - - 10,509 10,901	Com. (GB) 281 12.1 10.8 59.6 25.7
(seq. len = 128) Fastest runtime	Framework Iron [35] MPCFormer [47] Puma [21] Bolt [57] Bolt (WE) [57] Curl	Latency (s) 475 55.3 33.9 185 † 91 22.5) Rounds 13,663 10,509 10,901 1,629	Com. (GB) 281 12.1 10.8 59.6 25.7 5.7

Sequence length = 64	Model	Latency (s)	Rounds	Com. (GB)
	BERT Tiny	3.55	409	1.34
	BERT Base	13.63	$1,\!629$	2.8
	BERT Large	33.93	3,093	5.66
	GPT-2	16.61	$1,\!630$	3.77
	GPT-Neo	103.4	$3,\!118$	14.9
BERT Base				
(seq. len = 128)	Framework	Latency (s)) Rounds	Gom. (GB)
	Iron <u>[35]</u>	475	$13,\!663$	281
		1		

Sequence length = 64	Model	Latency (s)	Rounds	Com. (GB)
	BERT Tiny	3.55	409	1.34
	BERT Base	13.63	$1,\!629$	2.8
	BERT Large	33.93	3,093	5.66
	GPT-2	16.61	$1,\!630$	3.77
	GPT-Neo	103.4	$3,\!118$	14.9
BERT Base				
(seq. len = 128)	Framework	Latency (s)	Rounds	Com. (GB)
	and the set	1072		

- Lookup Tables (LUTs) can be used to evaluate non-linear functions in MPC
 - LUTs scale poorly for high precision \rightarrow enormous communication.
 - Polynomial approximations and quantization yield low accuracy!

- Lookup Tables (LUTs) can be used to evaluate non-linear functions in MPC
 - LUTs scale poorly for high precision \rightarrow enormous communication.
 - Polynomial approximations and quantization yield low accuracy!
- **Curl:** smaller LUTs without sacrificing accuracy
 - Using Discrete Wavelet Transforms (DWT) \rightarrow **low communication**
 - \circ Reduced LUT sizes \rightarrow high accuracy
 - Run LLMs (BERT Tiny/Base/Large, GPT-2, GPT Neo) \rightarrow in seconds!

- Lookup Tables (LUTs) can be used to evaluate non-linear functions in MPC
 - LUTs scale poorly for high precision \rightarrow enormous communication.
 - Polynomial approximations and quantization yield low accuracy!
- **Curl:** smaller LUTs without sacrificing accuracy
 - Using Discrete Wavelet Transforms (DWT) \rightarrow **low communication**
 - Reduced LUT sizes → high accuracy
 - Run LLMs (BERT Tiny/Base/Large, GPT-2, GPT Neo) \rightarrow in seconds!
 - Curl's technique can enhance related works:
 - **FHE,** Ripple [1]
 - **FSS**, Wave Hello to Privacy [2]

- Lookup Tables (LUTs) can be used to evaluate non-linear functions in MPC
 - LUTs scale poorly for high precision \rightarrow enormous communication.
 - Polynomial approximations and quantization yield low accuracy!
- **Curl:** smaller LUTs without sacrificing accuracy
 - Using Discrete Wavelet Transforms (DWT) \rightarrow **low communication**
 - Reduced LUT sizes \rightarrow high accuracy
 - Run LLMs (BERT Tiny/Base/Large, GPT-2, GPT Neo) \rightarrow in seconds!
 - Curl's technique can enhance related works:
 - **FHE**, Ripple [1]
 - **FSS**, Wave Hello to Privacy [2]

[1] C. Gouert, M. Ugurbil, D. Mouris, M. de Vega, and N. G. Tsoutsos. **Ripple: Accelerating Programmable Bootstraps for FHE with Wavelet Approximations.** In International Conference on Information Security (ISC), 2024.

Curl: Private LLMs through Wavelet-Encoded Look-Up Tables

Manuel B. Santos¹, Dimitris Mouris¹, Mehmet Ugurbil¹, Stanislaw Jarecki^{1,2}, José Reis¹, Shubho Sengupta³ and Miguel de Vega¹

{ manuel.santos, dimitris, memo, stanislaw.jarecki, jose.reis, miguel }@nillion.com

ssengupta@meta.com

