Private outsourcing of zkSNARK proof construction Mariana Gama

13 December 2024

Zero-knowledge proofs (of knowledge)

- Relation **R**
- *x* is public (statement)
- w is private (witness)

<u>Prover claims</u>: I know w such that $(x, w) \in R$

Zero-knowledge proofs (of knowledge)

- Relation *R*
- *x* is public (statement)
- *w* is private (witness)

<u>Prover claims</u>: I know w such that $(x, w) \in R$

<u>Completeness</u>: honest V accepts proof from honest P (<u>Knowledge</u>) <u>Soundness</u>: If P doesn't know *w*, V rejects <u>Zero-Knowledge</u>: does not leak anything about *w*

zkSNARKs Succint Non-interactive ARgument of Knowledge

- Relation **R**
- *x* is public (statement)
- *w* is private (witness)

<u>Prover claims</u>: I know w such that $(x, w) \in \mathbb{R}$

- <u>Completeness</u>: honest V accepts proof from honest P (Knowledge) Soundness: If P doesn't know w, V rejects
- Zero-Knowledge: does not leak anything about w
- Non-interactive: no exchange between prover and verifier <u>Succinct:</u> - proof size independent (sublinear) of witness size
 - fast verification

(zk)SNARKs: where are they used?

• Blockchain rollups

Accept/reject a new block

(zk)SNARKs: where are they used?

• Blockchain rollups

- zkML: proof of correct training / correct inference
- Sensors telemetry data
- Journalism (content provenance)

Accept/reject a new block

(zk)SNARKs: where are they used? image attestation

Any modifications: signature verification fails

(zk)SNARKs: where are they used? image attestation

zk-IMG [KHSS22] VerITAS [DCB24]

(zk)SNARKs: where are they used?

• Blockchain rollups

- zkML: proof of correct training / correct inference
- Sensors telemetry data
- Journalism (content provenance)

Accept/reject a new block

(zk)SNARKs: where are they used?

• Blockchain rollups

- zkML: proof of correct training / correct inference
- Sensors telemetry data
- Journalism (content provenance)

System Requirements

zkProver: 1TB RAM with 128-core CPU \bullet

If you want to run a full-fledged zkProver on your own, you'll need at least 1TB of RAM.

C polygon zkEVM

Computing zkSNARKs is expensive ... can we outsource it?

Computing zkSNARKs is expensive ... can we outsource it?

Horizontally scalable zkSNARKs:

- DIZK [WZCPS18]
- Pianist [LXZSZ24]
- Hekaton [RMHMM24]
- . . .

More worker nodes -> less work per node (but nodes learn the witness)

- Technique for computing over encrypted data.
- Achieves privacy by distributing the computation.

Adversary corrupting a percentage of the parties will still learn nothing but the output,

$$y = f(x_1, x_2, x_3)$$

- Technique for computing over encrypted data.
- Achieves privacy by distributing the computation.

Adversary corrupting a percentage of the parties will still learn nothing but the output,

$$y = f(x_1, x_2, x_3)$$

Linear operations on private data can be done locally

- non-linear operations require communication

- Collaborative zkSNARKs [OB22]
 - zkSNARKs for distributed secrets
 - Groth16, Marlin, Plonk (and Fractal)

- Collaborative zkSNARKs [OB22]
 - zkSNARKs for distributed secrets
 - Groth16, Marlin, Plonk (and Fractal)

- Traditional zkSNARK bottlenecks
 - FFTs
 - MSMs (multi-scalar multiplications):
 - $\sum_{i} \gamma_i \cdot g_i \text{ for scalars } \gamma_i \text{ and elliptic curve points } g_i$

- Collaborative zkSNARKs [OB22]
 - zkSNARKs for distributed secrets
 - Groth16, Marlin, Plonk (and Fractal)

- Traditional zkSNARK bottlenecks
 - FFTs
 - MSMs (multi-scalar multiplications):
 - $\sum \gamma_i \cdot g_i$ for scalars γ_i and elliptic curve points g_i
- -> Both are linear operations on the witness-dependent data

Eos [CLMZ23]

- Optimises distributed Marlin proof for outsourcing
- Leverages delegator as a trusted third party
 - to generate correlated randomness
 - to enforce malicious security

Eos [CLMZ23]

- Optimises distributed Marlin proof for outsourcing
- Leverages delegator as a trusted third party
 - to generate correlated randomness
 - to enforce malicious security

zkSaaS [GGJPS23]

- Uses packed secret sharing for SIMD operations
 - (at the cost of lower corruption threshold)

Blind zkSNARKs Private Proof Delegation and Verifiable Computation over Encrypted Data

Mariana Gama

KU Leuven

Emad Heydari Beni

KU Leuven Nokia Bell Labs Jiayi Kang KU Leuven

Jannik Spiessens KU Leuven

Frederik Vercauteren KU Leuven

Homomorphic Encryption (HE)

- Transforms arithmetic circuit F into homomorphic circuit Eval_F
- Encrypts inputs with secret key sk such that the other party can blindly compute F
- Ciphertext space $\mathbb{Z}_q[X] / \Phi(X)$ homomorphic to plaintext space \mathscr{P} : vectors on finite field \mathbb{F}

Homomorphic Encryption (HE)

- Transforms arithmetic circuit F into homomorphic circuit Eval_F
- Encrypts inputs with secret key sk such that the other party can blindly compute F
- Ciphertext space $\mathbb{Z}_q[X] / \Phi(X)$ homomorphic to plaintext space \mathscr{P} : vectors on finite field \mathbb{F}

Operations

- Element-wise addition (pt or ct)
- Element-wise multiplication (pt or ct)
- Permutation in vector

Noise grows with each operation

zkSNARK proof delegation with FHE

- Merkle trees are binary trees of hash evaluations -> extremely non-linear

• The Fractal zkSNARK scheme uses the FRI low degree test, which requires computing Merkle trees.

Data Blocks	

zkSNARK proof delegation with FHE

- Merkle trees are binary trees of hash evaluations -> extremely non-linear

• The Fractal zkSNARK scheme uses the FRI low degree test, which requires computing Merkle trees.

Dealing with Merkle trees

- 1. Commit to *ciphertext values* i.e., hash the ciphertexts "in the clear"
- 2. Append Proof of Decryption for the queried plaintext/ciphertext pairs

Data	
Data	
Blocks	- I
DIOCKS	- I
	-

How to prove statements obliviously? [GGW24]

- First work proposing zkSNARK proof outsourcing with FHE
- Does not specify parameters / how to optimise the computation
- Proposes using homomorphic zkSNARK computation for verifiable computation over encrypted data

How to prove statements obliviously? [GGW24]

- First work proposing zkSNARK proof outsourcing with FHE
- Does not specify parameters / how to optimise the computation
- Proposes using homomorphic zkSNARK computation for verifiable computation over encrypted data

Usual vFHE approach (expensive)

How to prove statements obliviously? [GGW24]

- First work proposing zkSNARK proof outsourcing with FHE
- Does not specify parameters / how to optimise the computation
- Proposes using homomorphic zkSNARK computation for verifiable computation over encrypted data

The opposite approach vCOED

HELIOPOLIS [ACGS24]

- Proposes concrete FHE parameters and optimises proof computation
- First implementation of homomorphic FRI computation
- Prover executes FRI for polynomials with degree bound 2¹⁵
 - in 207 seconds

Generalised BFV [GV24]

- Supports SIMD operations (as BGV/BFV [FV12])
- Supports high precision arithmetic (as CLPX [CLPX18])
- We select $\mathscr{P} = \mathbb{F}_{p^2}^{96}$ for $p = 2^{64} 2^{32} + 1$

• Ciphertext space $\mathbb{Z}_q[X] / \Phi(X)$ homomorphic to plaintext space \mathscr{P} : vectors on finite field \mathbb{F}

Computing Fractal

Generally a trade-off between number of operations and noise depth

• e.g., domain extensions: compute $f|_L$ from $f|_H$ Min. number of operations: $f|_L = \text{NTT}(\text{iNTT}(f|_H))$ using FFT Min. noise growth: $f|_L = V_L V_H^{-1} f|_H$ Solution: 2D NTT

Computing Fractal

Example estimate: R1CS with 2²⁰ constraints

Computation	Noise (bits)	C_{add}	$C_{\tt ptct}$	C_{aut}	C_{ctct}
Unpacking	9	0	16416	16416	0
Computing $ct[Mz]$	31	196602	163872	163872	0
Computing $ct[\vec{f_z}]/ct[\vec{f_Mz}]$	164	6389922	6455412	6455328	0
Computing $ct[\vec{g}]$	298	10633448	10780823	10649632	0
Computing $ct[\vec{f}_{FRI}]$	298	10895592	11042967	10649632	32768
Computing FRI	318	11354345	11075735	10649632	32768

Operation count and noise estimates for computing blind Fractal

Fully parallel on 96 cores: 18min

• Proves that $||c_0 + c_1 \cdot \text{sk} - [\Delta \cdot m]||_{\infty} \leq B$ w.r.t. to committed sk

- Proves that $||c_0 + c_1 \cdot \text{sk} [\Delta \cdot m]||_{\infty} \leq B$ w.r.t. to committed sk
- Based on [LNP22] Approximate Range Proofs

 - requires relaxation factor \approx noise space

- work over $\mathbb{Z}_{q'}[X]/(X^{64}+1)$ instead of $\mathbb{Z}_{q}[X]/\Phi_{m}(X)$

- Proves that $||c_0 + c_1 \cdot \text{sk} [\Delta \cdot m]||_{\infty} \leq B$ w.r.t. to committed sk
- Based on [LNP22] Approximate Range Proofs
 - requires relaxation factor \approx noise space
- Introduce new protocol for batching r PoDs
 - reduces prover cost $O(rn^2) \rightarrow O(n^2 + rn \log n)$
 - at the cost of $\approx 6 + \log r$ bits of noise

- work over $\mathbb{Z}_{a'}[X]/(X^{64}+1)$ instead of $\mathbb{Z}_{a}[X]/\Phi_{m}(X)$

Optimised using HE operations

- Modswitch From "FHE-friendly" $\mathbb{Z}_q / \Phi_m(X)$ to "LNP22-friendly" $\mathbb{Z}_{q'} / \Phi_m(X)$ i.e., from 398 bits to 97 bits
- Ringswitch From "efficient" $\mathbb{Z}_{q'}/\Phi_{2^{11}\cdot 3\cdot 7}(X)$ to "sm i.e., from 96 slots to 24 slots

MS and RS performed again inside batching protocol

nall"
$$\mathbb{Z}_{q'} / \Phi_{2^{8} \cdot 3 \cdot 7}(X)$$

- Implemented in C
- Built upon the LaZer library [LSS24]
- Our parameters: blind zkSNARK for 2²⁰ R1CS gates
 - Proof size: 12 kB
 - Prover runtime: 2.65s (1 thread) or 0.7s (8 threads)

Main takeaways

- Delegating zkSNARK provers with MPC / FHE is efficient

Blind zkSNARKs

- Appending a proof of decryption enables public verifiability
- Efficient instantiation using GBFV + PoD adapted from [LNP22]

• Homomorphically computing zkSNARKs enables verifiable computation over encrypted data