
13 December 2024

Private outsourcing of
zkSNARK proof construction
Mariana Gama

Zero-knowledge proofs (of knowledge)

Prover Verifier
x, w x

Accept
or

Reject

• Relation

• is public (statement)

• is private (witness)

Prover claims: I know such that

R

x

w

w (x, w) ∈ R

Zero-knowledge proofs (of knowledge)

Prover Verifier
x, w x

Accept
or

Reject

Completeness: honest V accepts proof from honest P

(Knowledge) Soundness: If P doesn’t know , V rejects

Zero-Knowledge: does not leak anything about

w

w

• Relation

• is public (statement)

• is private (witness)

Prover claims: I know such that

R

x

w

w (x, w) ∈ R

zkSNARKs  
Succint Non-interactive ARgument of Knowledge

• Relation

• is public (statement)

• is private (witness)

Prover claims: I know such that

R

x

w

w (x, w) ∈ R

Prover Verifier
x, w x

Accept
or

Reject

Completeness: honest V accepts proof from honest P

(Knowledge) Soundness: If P doesn’t know , V rejects

Zero-Knowledge: does not leak anything about

w

w

Non-interactive: no exchange between prover and verifier

Succinct: - proof size independent (sublinear) of witness size

 - fast verification

proof π

(zk)SNARKs: where are they used?

• Blockchain rollups 

 

 

New transactions

TX
 p
ro
of

Validators

Accept/reject a new block

(zk)SNARKs: where are they used?

• Blockchain rollups 

 

 

• zkML: proof of correct training / correct inference 

• Sensors telemetry data 

• Journalism (content provenance)

New transactions

TX
 p
ro
of

Validators

Accept/reject a new block

(zk)SNARKs: where are they used? 
 image attestation

Verify (signature)

Picture not forged

Location

Timestamp

…

Metadata
• Location
• Timestamp
• …

Signature

Signing key

‣ Any modifications: signature verification fails

(zk)SNARKs: where are they used? 
 image attestation

Verify (proof)

Picture not forged

Allowed
modifications

Location

Timestamp

…

Signing key

zkSNARK

Verify()

<— Modify(op,)

Verify(op in ops)

.metadata .metadata==

Return

‣ zk-IMG [KHSS22]

‣ VerITAS [DCB24]

(zk)SNARKs: where are they used?

• Blockchain rollups 

 

 

• zkML: proof of correct training / correct inference 

• Sensors telemetry data 

• Journalism (content provenance)

New transactions

TX
 p
ro
of

Validators

Accept/reject a new block

(zk)SNARKs: where are they used?

• Blockchain rollups 

 

 

• zkML: proof of correct training / correct inference 

• Sensors telemetry data 

• Journalism (content provenance)

New transactions

TX
 p
ro
of

Validators

Accept/reject a new block

Computing zkSNARKs is expensive
… can we outsource it? Prover Verifier

proof πx, w

Cloud server

Computing zkSNARKs is expensive
… can we outsource it?

Horizontally scalable zkSNARKs:

- DIZK [WZCPS18]

- Pianist [LXZSZ24]
- Hekaton [RMHMM24]
- …

More worker nodes —> less work per node

(but nodes learn the witness)

Prover Verifier

proof πx, w

Cloud server

Proof outsourcing with Multiparty Computation (MPC)

‣ Technique for computing over encrypted data.

‣ Achieves privacy by distributing the computation.
x1

x2
x3

Adversary corrupting a percentage of the parties
will still learn nothing but the output,

y = f(x1, x2, x3)

Proof outsourcing with Multiparty Computation (MPC)

‣ Technique for computing over encrypted data.

‣ Achieves privacy by distributing the computation.
x1

x2
x3

Adversary corrupting a percentage of the parties
will still learn nothing but the output,

y = f(x1, x2, x3)

Linear operations on private data can be done locally

- non-linear operations require communication

Proof outsourcing with Multiparty Computation (MPC)

w1

w2 w3

Collaborative zkSNARKs [OB22]

- zkSNARKs for distributed secrets

- Groth16, Marlin, Plonk (and Fractal)

π ⃗w

Proof outsourcing with Multiparty Computation (MPC)

w1

w2 w3

Collaborative zkSNARKs [OB22]

- zkSNARKs for distributed secrets

- Groth16, Marlin, Plonk (and Fractal)

Traditional zkSNARK bottlenecks

- FFTs

- MSMs (multi-scalar multiplications):  

 for scalars and elliptic curve points
∑
i

γi ⋅ gi γi giπ ⃗w

Proof outsourcing with Multiparty Computation (MPC)

w1

w2 w3

Collaborative zkSNARKs [OB22]

- zkSNARKs for distributed secrets

- Groth16, Marlin, Plonk (and Fractal)

Traditional zkSNARK bottlenecks

- FFTs

- MSMs (multi-scalar multiplications):  

 for scalars and elliptic curve points

—> Both are linear operations on the witness-dependent data

∑
i

γi ⋅ gi γi giπ ⃗w

Proof outsourcing with Multiparty Computation (MPC)

[w1]

[w2] [w3]

Prover 
(delegator)

[w] = [w1] + [w2] + [w3]

MPC parties

Proof outsourcing with Multiparty Computation (MPC)

[w1]

Eos [CLMZ23]

- Optimises distributed Marlin proof for outsourcing

- Leverages delegator as a trusted third party

‣ to generate correlated randomness

‣ to enforce malicious security

[w2] [w3]

Prover 
(delegator)

[w] = [w1] + [w2] + [w3]

MPC parties

Proof outsourcing with Multiparty Computation (MPC)

[w1]

Eos [CLMZ23]

- Optimises distributed Marlin proof for outsourcing

- Leverages delegator as a trusted third party

‣ to generate correlated randomness

‣ to enforce malicious security

zkSaaS [GGJPS23]

- Uses packed secret sharing for SIMD operations 

(at the cost of lower corruption threshold)

[w2] [w3]

Prover 
(delegator)

[w] = [w1] + [w2] + [w3]

MPC parties

Blind zkSNARKs 
Private Proof Delegation and  

Verifiable Computation over Encrypted Data
Mariana Gama 
KU Leuven

Emad Heydari Beni 
KU Leuven 
Nokia Bell Labs

Jiayi Kang 
KU Leuven

Jannik Spiessens 
KU Leuven 

Frederik Vercauteren 
KU Leuven 

Homomorphic Encryption (HE)

‣ Transforms arithmetic circuit into homomorphic circuit

‣ Encrypts inputs with secret key such that the other party can blindly compute

‣ Ciphertext space homomorphic to plaintext space : vectors on finite field

𝖥 𝖤𝗏𝖺𝗅𝖥
𝗌𝗄 𝖥

ℤq [X] / Φ(X) 𝒫 𝔽

𝖥

w x

y

𝖤𝗏𝖺𝗅𝖥

ct[w] x

ct[y]

Dec(ct[y]) = y

Homomorphic Encryption (HE)

‣ Transforms arithmetic circuit into homomorphic circuit

‣ Encrypts inputs with secret key such that the other party can blindly compute

‣ Ciphertext space homomorphic to plaintext space : vectors on finite field

𝖥 𝖤𝗏𝖺𝗅𝖥
𝗌𝗄 𝖥

ℤq [X] / Φ(X) 𝒫 𝔽

𝖥

w x

y

𝖤𝗏𝖺𝗅𝖥

ct[w] x

ct[y]

Dec(ct[y]) = y

Operations

‣ Element-wise addition (pt or ct)

‣ Element-wise multiplication (pt or ct)

‣ Permutation in vector 

Noise grows with each operation

zkSNARK proof delegation with FHE

• The Fractal zkSNARK scheme uses the FRI low degree test, which requires computing Merkle trees.

• Merkle trees are binary trees of hash evaluations —> extremely non-linear

zkSNARK proof delegation with FHE

• The Fractal zkSNARK scheme uses the FRI low degree test, which requires computing Merkle trees.

• Merkle trees are binary trees of hash evaluations —> extremely non-linear

Dealing with Merkle trees 

1. Commit to ciphertext values 
i.e., hash the ciphertexts “in the clear” 

2. Append Proof of Decryption for the
queried plaintext/ciphertext pairs

Previous work

How to prove statements obliviously? [GGW24]

‣ First work proposing zkSNARK proof outsourcing with FHE

‣ Does not specify parameters / how to optimise the computation

‣ Proposes using homomorphic zkSNARK computation for

verifiable computation over encrypted data

Previous work

How to prove statements obliviously? [GGW24]

‣ First work proposing zkSNARK proof outsourcing with FHE

‣ Does not specify parameters / how to optimise the computation

‣ Proposes using homomorphic zkSNARK computation for

verifiable computation over encrypted data

𝖥

𝖤𝗏𝖺𝗅𝖥

Constraints that
represent 𝖤𝗏𝖺𝗅𝖥

Usual vFHE approach 
(expensive)

Previous work

How to prove statements obliviously? [GGW24]

‣ First work proposing zkSNARK proof outsourcing with FHE

‣ Does not specify parameters / how to optimise the computation

‣ Proposes using homomorphic zkSNARK computation for

verifiable computation over encrypted data

𝖥

𝖯𝗋𝗈𝗏𝖾𝖥

𝖤𝗏𝖺𝗅𝖯𝗋𝗈𝗏𝖾𝖥

The opposite approach 
vCOED

Previous work

HELIOPOLIS [ACGS24]

‣ Proposes concrete FHE parameters and optimises proof

computation

‣ First implementation of homomorphic FRI computation

‣ Prover executes FRI for polynomials with degree bound  

in 207 seconds

215

Generalised BFV [GV24]

‣ Ciphertext space homomorphic to plaintext space : vectors on finite field

‣ Supports SIMD operations (as BGV/BFV [FV12])

‣ Supports high precision arithmetic (as CLPX [CLPX18])

‣ We select for

ℤq [X] / Φ(X) 𝒫 𝔽

𝒫 = 𝔽96
p2 p = 264 − 232 + 1

Computing Fractal

Generally a trade-off between number of operations and noise depth

‣ e.g., domain extensions: compute from  

Min. number of operations: using FFT  

Min. noise growth:  

Solution: 2D NTT

f |L f |H

f |L = 𝖭𝖳𝖳 (𝗂𝖭𝖳𝖳(f |H))

f |L = VLV−1
H f |H

Bit-reversal problem

NTT using MV

NT
T

us
in

g
FF

T

Computing Fractal

Example estimate: R1CS with constraints220

Operation count and noise estimates for computing blind Fractal

Fully parallel on 96 cores: 18min

Proof of Decryption

‣ Proves that w.r.t. to committed ∥c0 + c1 ⋅ 𝗌𝗄 − ⌊Δ ⋅ m⌉∥∞ ≤ B 𝗌𝗄

Proof of Decryption

‣ Proves that w.r.t. to committed

‣ Based on [LNP22] Approximate Range Proofs

- work over instead of

- requires relaxation factor noise space

∥c0 + c1 ⋅ 𝗌𝗄 − ⌊Δ ⋅ m⌉∥∞ ≤ B 𝗌𝗄

ℤq′
[X] / (X64 + 1) ℤq [X] / Φm(X)

≈

Proof of Decryption

‣ Proves that w.r.t. to committed

‣ Based on [LNP22] Approximate Range Proofs

- work over instead of

- requires relaxation factor noise space 

‣ Introduce new protocol for batching PoDs

- reduces prover cost

- at the cost of bits of noise

∥c0 + c1 ⋅ 𝗌𝗄 − ⌊Δ ⋅ m⌉∥∞ ≤ B 𝗌𝗄

ℤq′
[X] / (X64 + 1) ℤq [X] / Φm(X)

≈

r
O (rn2) → O (n2 + rn log n)

≈ 6 + log r

Proof of Decryption

Optimised using HE operations 

‣ Modswitch 
From “FHE-friendly” to “LNP22-friendly”  
i.e., from 398 bits to 97 bits 

‣ Ringswitch 
From “efficient” to “small”  
i.e., from 96 slots to 24 slots

MS and RS performed again inside batching protocol

ℤq / Φm(X) ℤq′
/ Φm(X)

ℤq′
/ Φ211⋅3⋅7 (X) ℤq′

/ Φ28⋅3⋅7 (X)

modswitch ringswitch

Proof of Decryption

‣ Implemented in C

‣ Built upon the LaZer library [LSS24] 

‣ Our parameters: blind zkSNARK for R1CS gates 

- Proof size: 12 kB 
- Prover runtime: 2.65s (1 thread) or 0.7s (8 threads)

220

Main takeaways

‣ Delegating zkSNARK provers with MPC / FHE is efficient 

‣ Homomorphically computing zkSNARKs enables verifiable computation over encrypted data

Blind zkSNARKs 

‣ Appending a proof of decryption enables public verifiability

‣ Efficient instantiation using GBFV + PoD adapted from [LNP22]

