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zkSNARKs  
Succint Non-interactive ARgument of Knowledge
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Prover Verifier
x, w x

Accept 
or  

Reject

Completeness: honest V accepts proof from honest P


(Knowledge) Soundness: If P doesn’t know , V rejects


Zero-Knowledge: does not leak anything about 

w

w

Non-interactive: no exchange between prover and verifier

Succinct:  - proof size independent (sublinear) of witness size


  - fast verification

proof π
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(zk)SNARKs: where are they used? 
      image attestation

Verify (proof)

Picture not forged

Allowed 
modifications

Location

Timestamp

…


Signing key

zkSNARK

Verify(   )

<— Modify(op,  )

Verify(op in ops)

.metadata .metadata==

Return

‣ zk-IMG [KHSS22]

‣ VerITAS [DCB24]
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Computing zkSNARKs is expensive 
… can we outsource it?

Horizontally scalable zkSNARKs:


- DIZK [WZCPS18]

- Pianist [LXZSZ24] 
- Hekaton [RMHMM24] 
- …


More worker nodes —> less work per node

(but nodes learn the witness)

Prover Verifier

proof  πx, w

Cloud server
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‣ Technique for computing over encrypted data.


‣ Achieves privacy by distributing the computation.
x1

x2
x3

Adversary corrupting a percentage of the parties 
will still learn nothing but the output,


y = f(x1, x2, x3)

Linear operations on private data can be done locally


- non-linear operations require communication 
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Collaborative zkSNARKs [OB22]


- zkSNARKs for distributed secrets 


- Groth16, Marlin, Plonk (and Fractal)


Traditional zkSNARK bottlenecks


- FFTs 


- MSMs (multi-scalar multiplications):  

  for scalars   and elliptic curve points 


—> Both are linear operations on the witness-dependent data 

∑
i

γi ⋅ gi γi giπ ⃗w
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[w1]

Eos [CLMZ23]


- Optimises distributed Marlin proof for outsourcing


- Leverages delegator as a trusted third party


‣  to generate correlated randomness


‣  to enforce malicious security   


zkSaaS [GGJPS23] 

- Uses packed secret sharing for SIMD operations 

(at the cost of lower corruption threshold)

[w2] [w3]

Prover 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[w] = [w1] + [w2] + [w3]

MPC parties
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Homomorphic Encryption (HE)

‣ Transforms arithmetic circuit  into homomorphic circuit 
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‣ Ciphertext space  homomorphic to plaintext space  : vectors on finite field 
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Dec(ct[y]) = y

Operations


‣ Element-wise addition (pt or ct)


‣ Element-wise multiplication (pt or ct)


‣ Permutation in vector 

Noise grows with each operation
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zkSNARK proof delegation with FHE

• The Fractal zkSNARK scheme uses the FRI low degree test, which requires computing Merkle trees.


• Merkle trees are binary trees of hash evaluations —> extremely non-linear

Dealing with Merkle trees 

1. Commit to ciphertext values 
i.e., hash the ciphertexts “in the clear” 

2. Append Proof of Decryption for the 
queried plaintext/ciphertext pairs 



Previous work

How to prove statements obliviously? [GGW24] 
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Previous work

How to prove statements obliviously? [GGW24] 

‣ First work proposing zkSNARK proof outsourcing with FHE


‣ Does not specify parameters / how to optimise the computation


‣ Proposes using homomorphic zkSNARK computation for 

verifiable computation over encrypted data

𝖥

𝖯𝗋𝗈𝗏𝖾𝖥

𝖤𝗏𝖺𝗅𝖯𝗋𝗈𝗏𝖾𝖥

The opposite approach 
vCOED



Previous work

HELIOPOLIS [ACGS24] 

‣ Proposes concrete FHE parameters and optimises proof 

computation  

‣ First implementation of homomorphic FRI computation


‣ Prover executes FRI for polynomials with degree bound  

in 207 seconds

215



Generalised BFV [GV24]

‣ Ciphertext space  homomorphic to plaintext space  : vectors on finite field 


‣ Supports SIMD operations (as BGV/BFV [FV12])

‣ Supports high precision arithmetic (as CLPX [CLPX18])


‣ We select   for 

ℤq [X] / Φ(X) 𝒫 𝔽

𝒫 = 𝔽96
p2 p = 264 − 232 + 1



Computing Fractal

Generally a trade-off between number of operations and noise depth


‣ e.g., domain extensions: compute  from  

Min. number of operations:   using FFT  

Min. noise growth:   

Solution: 2D NTT

f |L f |H

f |L = 𝖭𝖳𝖳 ( 𝗂𝖭𝖳𝖳( f |H ))

f |L = VLV−1
H f |H

Bit-reversal problem

NTT using MV

NT
T 

us
in

g 
FF

T



Computing Fractal

Example estimate: R1CS with  constraints220

Operation count and noise estimates for computing blind Fractal

Fully parallel on 96 cores: 18min
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Proof of Decryption

‣ Proves that   w.r.t. to committed 


‣ Based on [LNP22] Approximate Range Proofs

- work over  instead of 

- requires relaxation factor  noise space 

‣ Introduce new protocol for batching  PoDs

- reduces prover cost 

- at the cost of   bits of noise 

∥c0 + c1 ⋅ 𝗌𝗄 − ⌊Δ ⋅ m⌉∥∞ ≤ B 𝗌𝗄

ℤq′ 
[X] / (X64 + 1) ℤq [X] / Φm(X)

≈

r
O (rn2) → O (n2 + rn log n)

≈ 6 + log r



Proof of Decryption

Optimised using HE operations 

‣ Modswitch 
From “FHE-friendly”  to “LNP22-friendly”  
i.e., from 398 bits to 97 bits 

‣ Ringswitch 
From “efficient”  to “small”  
i.e., from 96 slots to 24 slots


MS and RS performed again inside batching protocol

ℤq / Φm(X) ℤq′ 
/ Φm(X)

ℤq′ 
/ Φ211⋅3⋅7 (X) ℤq′ 

/ Φ28⋅3⋅7 (X)

modswitch ringswitch



Proof of Decryption

‣ Implemented in C


‣ Built upon the LaZer library [LSS24] 

‣ Our parameters: blind zkSNARK for  R1CS gates 

-  Proof size: 12 kB 
-  Prover runtime: 2.65s (1 thread) or 0.7s (8 threads)
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Main takeaways

‣ Delegating zkSNARK provers with MPC / FHE is efficient 

‣ Homomorphically computing zkSNARKs enables verifiable computation over encrypted data


Blind zkSNARKs 

‣ Appending a proof of decryption enables public verifiability


‣ Efficient instantiation using GBFV + PoD adapted from [LNP22]


