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(Linear) Codes

  Hamming weight of  v

∥v∥0 = #{i : vi ≠ 0}

Minimum distance of : C d(C) = min
c,c′￼∈C,c≠c′￼

∥c − c′￼∥0
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q

 G ∈ 𝔽n×k,  C = {Gv : v ∈ 𝔽k
q}
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Input: Generator matrix , distance bound  and target vector G ∈ 𝔽n×k
q d ≥ 0 t ∈ 𝔽n

q

(YES) There is  s.t. c ∈ C(G) ∥c − t∥0 ≤ d

(NO) For all , c ∈ C(G) ∥c − t∥0 > d

Minimum Distance Problem over  (MDP )𝔽q qt = 0 ⟹

Nearest Codeword Problem over  (NCP )𝔽q q

c1 ∈ C

c2 ∈ C

c1 + c2 ∈ C



 B ∈ ℝn×k,  L = {Bv : v ∈ ℤk}

 Discrete subgroup of ℝn

Lattices

w1 ∈ L

w2 ∈ L

w1 + w2 ∈ L
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 B ∈ ℝn×k,  L = {Bv : v ∈ ℤk}

 Discrete subgroup of ℝn

Lattices

  -norm of ,  ℓp v p ≥ 1

∥v∥p = (
n

∑
i=1

|vi |
p )

1/p

Minimum distance of : L λ1(L) := min
v∈L∖{0}

∥v∥p

w1 ∈ L

w2 ∈ L

w1 + w2 ∈ L



Input: Base  of a lattice  and B ∈ ℤn×k L d > 0

(YES) There is  s.t. v ∈ L(B) ∥v∥p ≤ d

(NO) Every  satisfies v ∈ L(B) ∥v∥p > γd

-GapSVP, γ γ ≥ 1

GapSVPγ = 1 ⟹



How hard are these problems?

SVP: 

NP-hard for arbitrary , Micciancio ’00; Khot ’05; Haviv, Regev ’12 ( )
γ p ≥ 1

MDP: 

NP-hard for arbitrary , Håstad ’01, Dumer, Micciancio, Sudan ’03
γ



How hard are these problems?

SVP: 

NP-hard for arbitrary , Micciancio ’00; Khot ’05; Haviv, Regev ’12 ( )
γ p ≥ 1

MDP: 

NP-hard for arbitrary , Håstad ’01, Dumer, Micciancio, Sudan ’03
γ

Does this mean that “real-world” instances of 
these problems are computationally intractable?



Example

VERTEX COVER PROBLEM:  
Input: -vertex graph  and parameter 

YES if  has vertex cover of size , NO otherwise. 

n G k
G ≤ k

NP-hard (Karp ’72), but there’s an algorithm running in time  (Fellows ’88)O(2kn)



Parameterized complexity

Complexity in terms of the input size  and a parameter of interest n k

Fixed-Parameter Tractable (FPT): A problem is FPT iff there is an 
algorithm running in time: 


 


For some function .

f(k) ⋅ nc

f



Parameterized complexity

FPT reduction:

 
Clique instance


(G, k)  
 instance
(x, k′￼)

Π

algorithm running

in time f(k) ⋅ nc

YES/NO instances mapped to YES/NO instances   &    k′￼ = g(k)

A parameterized problem  is -hard if there is an FPT reduction from Clique to .Π W[1] Π



Bennett, Cheraghchi, Guruswami, Ribeiro ’23: 


• -SVP  is -hard for  and all 


• -SVP  is -hard for 


γ p W[1] p > 1 γ > 1
γ 1 W[1] γ < 2

-approximate Shortest Vector Problem, γ γ ≥ 1



W[1] hardness of γ-SVPp

In Bennet et al. ’23, the reduction applied 
is based on Khot’s reduction from NCP  

to SVP , while ensuring Haviv-Regev’s 
Tensoring conditions

2

p



(construction 

A)

L = 2(C(G) + 2ℤn)
2t



(locally dense)

L′￼ = BCH + 2ℤm
s



W[1] hardness of γ-SVPp



(construction 

A)

L = 2(C(G) + 2ℤn)
2t



(locally dense)

L′￼ = BCH + 2ℤm
s

To use the reduction in Bennet et al. ’23 with  , we 
need codes that are “better than BCH”

BUT there are none (so far!) for  with  prime

p = 1

Zp p

In Bennet et al. ’23, the reduction applied 
is based on Khot’s reduction from NCP  

to SVP , while ensuring Haviv-Regev’s 
Tensoring conditions

2

p



Our work: We extended the Haviv-Regev tensoring conditions to Z4

W[1] hardness of γ-SVP1

Costa, Ribeiro ’24:  
Fix an integer  and real numbers . Suppose that  with  and  is an instance of 

 with the additional property that if  is a NO instance of , then every nonzero vector  

satisfies at least one of the following conditions, where :


•  


•  e 


•  e 


Then,   is a YES (resp. NO) instance of   if  is a YES (resp. NO) instance of , where  

denotes the -fold tensor product of  with itself.


c ≥ 1 p, γ ≥ 1 (B, k) B ∈ ℤm×n k ∈ ℤ+

γ-SVPp (B, k) γ-SVPp w ∈ ℒ(B)
d = γk

∥w∥0 > dp

w ∈ 4ℤm ∥w∥0 > dp/4p

w ∈ 4ℤm ∥w∥p > dc+3p/2

(B⊗c, kc) γc-SVPp (B, k) γ-SVPp B⊗c

c B
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