Parameterized Complexity and Cryptography from Lattice Problems

Mariana Rio Costa

Portugal Crypto Day 2024 13th December 2024

IST - UL

Complexity of Codes and Lattice Problems

Abstract

development of secure cryptosystems.

norm.

Mariana Costa, advised by João Ribeiro

- Computational problems involving point lattices are crucial in various areas of computer science, such as integer programming, coding theory, cryptanalysis, and particularly in the
- We work on the results left open by Huck Bennett, Mahdi Cheraghchi, Venkatesan Guruswami and João Ribeiro (STOC 2023) on the complexity of parameterized γ -SVP on the ℓ_1

(Linear) Codes

Vector subspace of \mathbb{F}_q^n

(Linear) Codes

Vector subspace of \mathbb{F}_q^n

Hamming weight of *v*

$$\|v\|_{0} = \#\{i : v_{i} \neq 0\}$$

(Linear) Codes

Vector subspace of \mathbb{F}_q^n

Hamming weight of v

$$\|v\|_{0} = \#\{i : v_{i} \neq 0\}$$

Minimum distance of C: $d(C) = \min_{c,c' \in C, c \neq c'} ||c - c'||_0$

Nearest Codeword Problem over \mathbb{F}_a (NCP_a)

Input: Generator matrix $G \in \mathbb{F}_{a}^{n \times k}$, distance bound $d \geq 0$ and target vector $t \in \mathbb{F}_{q}^{n}$ **(YES)** There is $c \in C(G)$ s.t. $||c - t||_0 \le d$ (NO) For all $c \in C(G)$, $||c - t||_0 > d$

 $t = 0 \implies \text{Minimum Distance Problem over } \mathbb{F}_a (\text{MDP}_a)$

Discrete subgroup of \mathbb{R}^n

$$B \in \mathbb{R}^{n \times k}, L = \{Bv : v \in \mathbb{Z}^k\}$$

Discrete subgroup of \mathbb{R}^n

$$B \in \mathbb{R}^{n \times k}, \ L = \{Bv : v \in \mathbb{Z}^k\}$$

$$\ell_p \text{-norm of } v, p \ge 1$$
$$\|v\|_p = \left(\sum_{i=1}^n |v_i|^p\right)^{1/p}$$

Discrete subgroup of \mathbb{R}^n

 $w_2 \in L$

$$\mathscr{C}_{p}\text{-norm of } v, p \ge 1$$
$$\|v\|_{p} = \left(\sum_{i=1}^{n} |v_{i}|^{p}\right)^{1/p}$$

Minimum distance of $L: \lambda_1(L) := \min_{v \in L \setminus \{0\}} \|v\|_p$

γ -GapSVP, $\gamma \geq 1$

Input: Base $B \in \mathbb{Z}^{n \times k}$ of a lattice L and d > 0(YES) There is $v \in L(B)$ s.t. $||v||_p \leq d$ (NO) Every $v \in L(B)$ satisfies $||v||_p > \gamma d$

 $\gamma = 1 \implies \text{GapSVP}$

How hard are these problems?

SVP: NP-hard for arbitrary γ , Micciancio MDP:

NP-hard for arbitrary γ , Micciancio '00; Khot '05; Haviv, Regev '12 ($p \ge 1$)

NP-hard for arbitrary γ , Håstad '01, Dumer, Micciancio, Sudan '03

How hard are these problems?

SVP:

MDP:

NP-hard for arbitrary γ , Håstad '01, Dumer, Micciancio, Sudan '03

NP-hard for arbitrary γ , Micciancio '00; Khot '05; Haviv, Regev '12 ($p \ge 1$)

- Does this mean that "real-world" instances of these problems are computationally intractable?

Example

VERTEX COVER PROBLEM: Input: *n*-vertex graph G and parameter k **YES** if G has vertex cover of size $\leq k$, **NO** otherwise.

NP-hard (Karp '72), **but** there's an algorithm running in time $O(2^k n)$ (Fellows '88)

Parameterized complexity

Complexity in terms of the input size *n* and a parameter of interest k

Fixed-Parameter Tractable (FPT): A problem is FPT iff there is an algorithm running in time:

For some function f.

$$(k) \cdot n^{c}$$

Parameterized complexity

FPT reduction:

(G,k)Clique instance

A parameterized problem Π is W[1]-hard if there is an FPT reduction from Clique to Π .

γ -approximate Shortest Vector Problem, $\gamma \geq 1$

- Bennett, Cheraghchi, Guruswami, Ribeiro '23:
- γ -SVP_p is W[1]-hard for p > 1 and all $\gamma > 1$
- γ -SVP₁ is W[1]-hard for $\gamma < 2$

Parameterized Inapproximability of the Minimum Distance Problem over all Fields and the Shortest Vector Problem in all ℓ_p Norms^{*}

Huck Bennett[†] Mahdi Cheraghchi[‡] Venkatesan Guruswami[§] João Ribeiro[¶]

W[1] hardness of γ -SVP_p

In Bennet *et al.* '23, the reduction applied is based on **Khot's reduction from NCP**₂ **to SVP**_p, while ensuring **Haviv-Regev's** Tensoring conditions

W[1] hardness of γ -SVP_p

In Bennet *et al.* '23, the reduction applied is based on **Khot's reduction from NCP**₂ **to SVP**_p, while ensuring **Haviv-Regev's** Tensoring conditions

To use the reduction in Bennet *et al.* '23 with p = 1, we need codes that are "better than BCH" **BUT** there are none (so far!) for Z_p with p prime

W[1] hardness of γ -SVP₁

Our work: We extended the Haviv-Regev tensoring conditions to Z_4

Costa, Ribeiro '24:

Fix an integer $c \ge 1$ and real numbers $p, \gamma \ge 1$. Suppose that (B, k) with $B \in \mathbb{Z}^{m \times n}$ and $k \in \mathbb{Z}^+$ is an instance of γ -SVP_p with the additional property that if (B, k) is a NO instance of γ -SVP_p, then every nonzero vector $w \in \mathscr{L}(B)$ satisfies at least one of the following conditions, where $d = \gamma k$:

- $||w||_0 > d^p$
- $w \in 4\mathbb{Z}^m e ||w||_0 > d^p/4^p$
- $w \in 4\mathbb{Z}^m e \|w\|_p > d^{c+3p/2}$

Then, $(B^{\otimes c}, k^c)$ is a **YES** (resp. **NO**) instance of γ^c - SVP_p if (B, k) is a **YES** (resp. **NO**) instance of γ - SVP_p , where $B^{\otimes c}$ denotes the *c*-fold tensor product of *B* with itself.

References

Bennett, H., Cheraghchi, M., Guruswami, V., & Ribeiro, J. (2023). Parameterized Inapproximability of the Minimum Distance Problem over All Fields and the Shortest Vector Problem in All ℓ_p Norms. In *Proceedings of the 55th Annual ACM Symposium on Theory of Computing* (pp. 553-566).

Costa, M. & Ribeiro, J. (2024). Complexity of Codes and Lattice Problems. Not Published.