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A

(x, w)

Soundness: Zero-Knowledge:
Pr [x ¢ & AV accepts| = negl(1) (T < Sim()) ~ [T « (V(x) < P(x, w)))
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A

(x, w)

Soundness: Zero-Knowledge:
Prx & £ Al < V(x,n)| = negl(2) {7 < Sim(x)} ~ {x = P(x,w))
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Why NIZKs?

Theory: Applications:
* Minimal round * CCA security
complexity e Signatures

 Minimal assumptions * Blockchains
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Random Oracle Standard Model

e Fiat-Shamir * Impossible!
e Need at least 4 rounds
Problem: RO don’t exist!

Assume CRS

This talk: NIZK = NIZK for all NP in the CRS model
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NIZKs Constructions

Correlation Intractability Hash

* |O[CCRR18,HL18]
 FHE/LWE [CCH+19,PS19]
 DDH + LPN [BKMZ20]

o Sub-exp DDH [JJ21]

« MQ + LPN [DJJ24]
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NIZKs Constructions

[GOS’06] Correlation Intractability Hash Hidden-Bits Generator
. . + iO [CCRR18,HL18] . -
Pairings . FHEAWE [CCH+19.PS19 Trapdoor permutations
+ DDH + LPN [BKM20] [FLS90]
* Sub-exp DDH [JJ21] * LWE (super-poly mod to
« MQ + LPN [DJJ24] nOise) [VVat24]
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Graph H with an
Hamiltonian cycle C’

o(e)

For all non-edges e, T =20
Check if 0(e) is non-edge —
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Soundness

« H hasacycle C’
* o prove:

If 0(e) is an edge in H then e is an edge in G

<

If e is an non-edge in G then o(e) is an non-edge in H
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Zero-Knowledge

Description of Sim:
e Choose a random permutation 0.
» For all non-edges ¢ of G, reveal a non-edge o(¢) of H

» (S1m has full control over the hidden-bits)
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From Hidden-Bits Model to CRS Model:
Hidden-Bits Generator [QRW19,KMY20]

crs<Setup

Ver(com, a,l, ﬂl-) (com, (@, ..., ), (7, ..., m))<—GenBits

com, {a;, T;} ;g
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Completeness:
Honest proofs are accepted

Output sparsity:

Given crs, the number of strings that a prover can open is small
Statistical Binding:

com statistically determines a string

Hiding:

Given com, {Q;, 7T; } .+ Ot remains hidden
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Hidden-Bits Generator to NIZKs

Theorem [QRW19,KMY20]:

We can build a NIZK in the CRS model, given a HBG in the CRS
model and a NIZK in the hidden-bits model

Problem:
* Build HBG.
* Previous works: TDP and LWE (with super-poly mod-to-noise).
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New Primitive: Vector Trapdoor Hash

(hk, {ek;, td;};ex) <Setup

h, {7}, < Hash(hk, x
d: < Dec(td;, h) ( 7} E["]) ( )
Local opening: Statistical binding: Hiding:

7; is a local opening for x; | e; = dl- for almost all i € [ k] e;« is uniform, given { e, r; | i
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VTDH to Hidden-Bits Generator

Theorem: e ek
VTDH implies HBG - {€Kitieq

com, {a;, 7/} ;s (h, {m;};ci) < Hash(hk, x)
——————————————————————————
LocVer(com, z;, x;) = 1

com=h

Enc(ek;, z;) = e,

7 = (7, X;)
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Our Results

Theorem:

VTDH from: i) LWE with polynomial mod-to-noise ratio
i) DDH + LPN

Corollaries:

e (Dual-mode) NIZK from LWE.
e NIZK from DDH + LPN with statistical soundness.



Our Results

) LWE with polynomial mod-to-noise ratio



Learning with Errors

( A S A +
%

&

/ ¢
Expanding ( \ )
’ u

A < {0,1)™" s < {01}, u « {0,1)"and e « DG”
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VTDH from LWE: Hash, Encoding and Decoding

hk = Al’ ""Ak’ WI’ oo Wk such that Aiwi — Ui
N !

binary
ek: = (sTA, + e s'U.+e,....sTA, +e)
1 ] 1 1, ¢ o o9 ] ] 79 ** ] k k
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VTDH from LWE: Commitment and Local Proofs

Pick binary X = (X4, ...,X;) ,compute h = Z Ux;

ﬂi — (W1X19 ""Xi’ ,Wka)

|ocal Verification:

(Alaﬂ'ana--'aaAk)ﬂi — ...,xi,...,Wka)
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VIDH from LWE: Encoding and Local Proofs

Encoding: e; = ek;r;

=(s;A;+e,....s;U;+e,....s; A + e )(Wix,,...,X,, ..., WX,
Decoding: d; = Sl-Th = §; ( Z Uin-) Round(e;) = Round(d;)

U
Statistical Binding
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1st Step: ek;=(s;A,+e.,....s; U +e,....s A +e)
| LWE




VIDH from LWE: Hiding for: = 1

To prove: ¢, = ekyr; = v « Unif

1st Step: ek; = (Sl-TAl + €, ..., SiTUi + €,
, LWE

2nd Step: (ekimy, Wix)) ~, (v, W x,)
| HL



Recap

 |LWE Result: Dual-mode NIZK from LWE .
« DDH + LPN Result: NIZK from (DDH + LPN) with statistical soundness.
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