Non-Interactive Zero-Knowledge from
Vector Trapdoor Hash

Pedro Branco

Based on joint work with Arka Rai Choudhuri, Nico Déttling, Abhishek Jain, Giulio Malavolta and Akshayaram Srinivasan

Non-Interactive Zero-Knowledge from
Vector Trapdoor Hash

or
NIZK and Hidden-Bits Generator

Pedro Branco

Based on joint work with Arka Rai Choudhuri, Nico Déttling, Abhishek Jain, Giulio Malavolta and Akshayaram Srinivasan

Zero-Knowledge Proofs [GMR85]

!‘

A

(x, w)

Zero-Knowledge Proofs [GMR85]

!‘

A

(x, w)

Zero-Knowledge Proofs [GMR85]

A

(x, w)

Zero-Knowledge Proofs [GMR85]

A

(x, w)

Soundness:
Pr [x &L NV accepts] = negl(4)

Zero-Knowledge Proofs [GMR85]

A

(x, w)

Soundness: Zero-Knowledge:
Pr [x ¢ & AV accepts| = negl(1) (T < Sim()) ~ [T « (V(x) < P(x, w)))

Non-Interactive Zero-Knowledge Proofs [DMP88]

A

(x, w)

Non-Interactive Zero-Knowledge Proofs [DMP88]

A

(x, w)

Soundness:
Pr [x & L N1 <« V(x, JZ')] = negl(4)

Non-Interactive Zero-Knowledge Proofs [DMP88]

A

(x, w)

Soundness: Zero-Knowledge:
Prx & £ Al < V(x,n)| = negl(2) {7 < Sim(x)} ~ {x = P(x,w))

Why NIZKs?

Theory:

 Minimal round
complexity
 Minimal assumptions

Why NIZKs?

Theory: Applications:
* Minimal round * CCA security
complexity e Signatures

 Minimal assumptions * Blockchains

Random Oracle Vs Standard model

Random Oracle

e Fiat-Shamir

Random Oracle Vs Standard model

Random Oracle
e Fiat-Shamir

Problem: RO don’t exist!

Random Oracle Vs Standard model

Random Oracle Standard Model

e Fiat-Shamir * Impossible!
e Need at least 4 rounds
Problem: RO don’t exist!

Random Oracle Vs Standard model

Random Oracle Standard Model

e Fiat-Shamir * Impossible!
e Need at least 4 rounds
Problem: RO don’t exist!

Assume CRS

Random Oracle Vs Standard model

Random Oracle Standard Model

e Fiat-Shamir * Impossible!
e Need at least 4 rounds
Problem: RO don’t exist!

Assume CRS

This talk: NIZK = NIZK for all NP in the CRS model

NIZKs Constructions

GOS’06]

* Pairings

GOS’06]

* Pairings

NIZKs Constructions

Correlation Intractability Hash

* |O[CCRR18,HL18]
 FHE/LWE [CCH+19,PS19]
 DDH + LPN [BKMZ20]

o Sub-exp DDH [JJ21]

« MQ + LPN [DJJ24]

NIZKs Constructions

[GOS’06] Correlation Intractability Hash Hidden-Bits Generator
. Daiv « iO [CCRR18,HL18] . -
Pairings . FHEAWE [CCH+19.PS19 Trapdoor permutations
+ DDH + LPN [BKM20] [FLS90]
* Sub-exp DDH [JJ21] * LWE (super-poly mod to

+ MQ + LPN [DJJ24] noise) [Wat24]

NIZKs Constructions

[GOS’06] Correlation Intractability Hash Hidden-Bits Generator
. . + iO [CCRR18,HL18] . -
Pairings . FHEAWE [CCH+19.PS19 Trapdoor permutations
+ DDH + LPN [BKM20] [FLS90]
* Sub-exp DDH [JJ21] * LWE (super-poly mod to
« MQ + LPN [DJJ24] nOise) [VVat24]

?

Hidden-Bits Model [FLS90]

1‘

LTI uniform bits

A

(x, w)

Hidden-Bits Model [FLS90]

LTI uniform bits

A

(x, w)

Hidden-Bits Model [FLS90]

1‘

NN N E uniform bits

NIZK in the Hidden-Bits Model [FLS90]

(G, C)

Graph Cycle

NIZK in the Hidden-Bits Model [FLS90]

IERE-EEREEAEE T ERAREE A,

Hamiltonian cycle C’

j

(G, C)

s

Graph Cycle

NIZK in the Hidden-Bits Model [FLS90]

IERE-EEREEAEE T ERAREE A,

Hamiltonian cycle C’

0 mapping C to C’
If e non-edge of G,
Reveal 0(e) non-edge of H

(G, C)

s

Graph Cycle

NIZK in the Hidden-Bits Model [FLS90]

IERE-EEREEAEE T ERAREE A,

Hamiltonian cycle C’

=23 0 mapping C to C’
G
If e non-edge of G,

Reveal 0(e) non-edge of H

(G, C)

s

Graph Cycle

NIZK in the Hidden-Bits Model [FLS90]

t

G

Graph H with an
Hamiltonian cycle C’

For all non-edges e, T =20
Check if 0(e) is non-edge —

NIZK in the Hidden-Bits Model [FLS90]

t

G

Graph H with an
Hamiltonian cycle C’

o(e)

For all non-edges e, T =20
Check if 0(e) is non-edge —

Soundness

« H hasacycle C’

Soundness

« H hasacycle C’
* o prove:

If 0(e) is an edge in H then e is an edge in G

Soundness

« H hasacycle C’
* o prove:

If 0(e) is an edge in H then e is an edge in G

<

If e is an non-edge in G then o(e) is an non-edge in H

Zero-Knowledge

Description of Sim:

e Choose a random permutation 0.

Zero-Knowledge

Description of Sim:
e Choose a random permutation 0.

» For all non-edges ¢ of G, reveal a non-edge o(¢) of H

Zero-Knowledge

Description of Sim:
e Choose a random permutation 0.
» For all non-edges ¢ of G, reveal a non-edge o(¢) of H

» (S1m has full control over the hidden-bits)

From Hidden-Bits Model to CRS Model:
Hidden-Bits Generator [QRW19,KMY20]

crs<Setup

From Hidden-Bits Model to CRS Model:
Hidden-Bits Generator [QRW19,KMY20]

crs<Setup

(com, (@, ...,), (7, ..., m))<—GenBits

com, {a;, T;} ;g

From Hidden-Bits Model to CRS Model:
Hidden-Bits Generator [QRW19,KMY20]

crs<Setup

Ver(com, a,l, ﬂl-) (com, (@, ...,), (7, ..., m))<—GenBits

com, {a;, T;} ;g

Hidden-Bits Generator [QRW19,KMY20]

Completeness:
Honest proofs are accepted

Hidden-Bits Generator [QRW19,KMY20]

Completeness:
Honest proofs are accepted

Output sparsity:
Given crs, the number of strings that a prover can open is small

Hidden-Bits Generator [QRW19,KMY20]

Completeness:
Honest proofs are accepted

Output sparsity:
Given crs, the number of strings that a prover can open is small
Statistical Binding:

com statistically determines a string

Hidden-Bits Generator [QRW19,KMY20]

Completeness:
Honest proofs are accepted

Output sparsity:

Given crs, the number of strings that a prover can open is small
Statistical Binding:

com statistically determines a string

Hiding:

Given com, {Q;, 7T; } .+ Ot remains hidden

Hidden-Bits Generator to NIZKs

Theorem [QRW19,KMY20]:
We can build a NIZK in the CRS model, given a HBG in the CRS
model and a NIZK in the hidden-bits model

Hidden-Bits Generator to NIZKs

Theorem [QRW19,KMY20]:

We can build a NIZK in the CRS model, given a HBG in the CRS
model and a NIZK in the hidden-bits model

Problem:
* Build HBG.
* Previous works: TDP and LWE (with super-poly mod-to-noise).

New Primitive: Vector Trapdoor Hash

New Primitive: Vector Trapdoor Hash

(hk, {ek;, td;};ex) <Setup

New Primitive: Vector Trapdoor Hash

(hk, {ek;, td;};ex) <Setup

(h, {7;},e11) < Hash(hk, x)

A

New Primitive: Vector Trapdoor Hash

(hka {ekia tdl}lE[k]) <—Setup

e; < Enc(ek;, ;)

h, {7}, «— Hash(hk, x
w d; < Dec(td;, h) ({ }E[k]) ()

A

New Primitive: Vector Trapdoor Hash

(hk, {ek;, td;};ex) <Setup

A

h, {7}, «— Hash(hk, x
w d; < Dec(td;, h) ({ }E[k]) ()

Local opening:
7t; Is a local opening for X;

New Primitive: Vector Trapdoor Hash

(hk, {ek;, td;};ex) <Setup

h, {7}, < Hash(hk, x
d; — Dec(td;, h) (b {7} (kX0
Local opening: Statistical binding:

7; is a local opening for X; | e; = d. for almost all i € [£]

New Primitive: Vector Trapdoor Hash

(hk, {ek;, td;};ex) <Setup

h, {7}, < Hash(hk, x
d: < Dec(td;, h) (7} E["]) ()
Local opening: Statistical binding: Hiding:

7; is a local opening for x; | e; = dl- for almost all i € [k] e;« is uniform, given { e, r; | i

VTDH to Hidden-Bits Generator

Theorem:
VTDH implies HBG

VTDH to Hidden-Bits Generator

Theorem:
VTDH implies HBG hk, tekitic

VTDH to Hidden-Bits Generator

Theorem: e ek

VTDH implies HBG - {€Kitieq
(h, {7;},c;1) < Hash(hk, x)
€; Enc(ek,-, 7Z'l-)

VTDH to Hidden-Bits Generator

Theorem: e ek

VTDH implies HBG - {€Kitieq
(h, {7;},c;1) < Hash(hk, x)
€; Enc(ek,-, 7Z'l-)

com=h

7 = (7, X;)

VTDH to Hidden-Bits Generator

Theorem: e ek
VTDH implies HBG - {€Kitieq

com, {a;, 7/} ;s (h, {m;};ci) < Hash(hk, x)
-

com=h

7 = (7, X;)

VTDH to Hidden-Bits Generator

Theorem: e ek
VTDH implies HBG - {€Kitieq

com, {a;, 7/} ;s (h, {m;};ci) < Hash(hk, x)
——————————————————————————
LocVer(com, z;, x;) = 1

com=h

Enc(ek;, z;) = e,

7 = (7, X;)

Our Results

Theorem:

VTDH from: i) LWE with polynomial mod-to-noise ratio
i) DDH + LPN

Our Results

Theorem:

VTDH from: i) LWE with polynomial mod-to-noise ratio
i) DDH + LPN

Corollaries:

e (Dual-mode) NIZK from LWE.
e NIZK from DDH + LPN with statistical soundness.

Our Results

) LWE with polynomial mod-to-noise ratio

Learning with Errors

(A S A +
%

&

/ ¢
Expanding (\)
’ u

A < {0,1)™" s < {01}, u « {0,1)"and e « DG”

VTDH from LWE: Hash, Encoding and Decoding

hk:Al”Ak’WI”Wk
N

binary

VTDH from LWE: Hash, Encoding and Decoding

hk = Al’ ""Ak’ WI’ oo Wk such that Al-Wl- — Ui
N !

binary

VTDH from LWE: Hash, Encoding and Decoding

hk = Al’ ""Ak’ WI’ oo Wk such that Aiwi — Ui
N !

binary
ek: = (sTA, + e s'U.+e,....sTA, +e)
1] 1 1, ¢ o o9]] 79 **] k k

VTDH from LWE: Commitment and Local Proofs

Pick binary X = (X, ..., X;)

VTDH from LWE: Commitment and Local Proofs

Pick binary X = (X4, ...,X;) ,compute h = Z Ux;

VTDH from LWE: Commitment and Local Proofs

Pick binary X = (X4, ...,X;) ,compute h = Z Ux;

ﬂi — (W1X19 ""Xi’ ,Wka)

VTDH from LWE: Commitment and Local Proofs

Pick binary X = (X4, ...,X;) ,compute h = Z Ux;

71' — (W1X1, . o Wka)

|ocal Verification:

Ay, ..., U, ..., A)r;

VTDH from LWE: Commitment and Local Proofs

Pick binary X = (X4, ...,X;) ,compute h = Z Ux;

71' — (W1X1, . o Wka)

|ocal Verification:

(Ala SRR Uia R 9Ak)7z.i — (Al’ ””Ui’ coos ,Ak)(wlxl, ...,xi, ,Wka)

VTDH from LWE: Commitment and Local Proofs

Pick binary X = (X4, ...,X;) ,compute h = Z Ux;

ﬂi — (W1X19 ""Xi’ ,Wka)

|ocal Verification:

(Alaﬂ'ana--'aaAk)ﬂi — ...,xi,...,Wka)

VIDH from LWE: Encoding and Local Proofs

Encoding: e; = ek;r;

VIDH from LWE: Encoding and Local Proofs

Encoding: e; = ek;r;

=(s;A;+e,....s;U;+e,....s; A + e)(Wix,,...,X,, ..., WX,

VIDH from LWE: Encoding and Local Proofs

Encoding: e; = ek;r;

=(s;A;+e,....s;U;+e,....s; A + e)(Wix,,...,X,, ..., WX,

=si(ZUixi)+é

VIDH from LWE: Encoding and Local Proofs

Encoding: e; = ek;r;

=(s;A;+e,....s;U;+e,....s; A + e)(Wix,,...,X,, ..., WX,

=si(ZUixi)+é

Decoding: d; = Sl-Th = S; (Z Uixi>

VIDH from LWE: Encoding and Local Proofs

Encoding: e; = ek;r;

=(s;A;+e,....s;U;+e,....s; A + e)(Wix,,...,X,, ..., WX,
Decoding: d; = Sl-Th = §; (Z Uin-) Round(e;) = Round(d;)

U
Statistical Binding

VIDH from LWE: Hiding for: = 1

To prove: ¢, = ekyr; = v « Unif

VIDH from LWE: Hiding for: = 1

To prove: ¢, = ekyr; = v « Unif

1st Step: ek;=(s;A,+e.,....s; U +e,....s A +e)

VIDH from LWE: Hiding for: = 1

To prove: ¢, = ekyr; = v « Unif

1st Step: ek;=(s;A,+e.,....s; U +e,....s A +e)
| LWE

VIDH from LWE: Hiding for: = 1

To prove: ¢, = ekyr; = v « Unif

1st Step: ek; = (Sl-TAl + €, ..., SiTUi + €,
, LWE

2nd Step: (ekimy, Wix)) ~, (v, W x,)
| HL

Recap

 |LWE Result: Dual-mode NIZK from LWE .
« DDH + LPN Result: NIZK from (DDH + LPN) with statistical soundness.

Non-Interactive Zero-Knowledge from
Vector Trapdoor Hash

Pedro Branco

Based on joint work with Arka Rai Choudhuri, Nico Déttling, Abhishek Jain, Giulio Malavolta and Akshayaram Srinivasan

