
Formal Verification of
Post-Quantum Cryptography

in Formosa-Crypto
Manuel Barbosa mbb@fc.up.pt

University of Porto (FCUP) and INESC TEC and MPI-SP

mailto:mbb@fc.up.pt

Context and Goals

• Take techniques from the study of programming languages such as:

• Programming language design and compilation

• Various approaches to program verification

• Type systems for security

• Interactive theorem provers

• etc.

Different
approaches

tools
technologies

Computer-Aided Cryptography

Computer-Aided Cryptography
• Apply them to (high-assurance) cryptography:

• Domain-specific programming languages and compilers
• Specification of crypto algorithms and protocols
• Specification and analysis of security models
• Formal verification of:

• functional correctness
• provable security
• countermeasures against

• side-channel attacks
• micro-architectural attacks

Different
approaches

tools
technologies

Formosa Crypto
• Access to tools, examples and usage guides

• Interact with developers and other users

• Learn what has been done and ongoing work

• Help understanding tools and solving problems

• Ask for new features

• Regular in person meetings:

• Jasmin/EasyCrypt/libjade development

• research projects around the tools

• investigate new ideas, collaborations

formosa-crypto.org

Community
around Jasmin,

EasyCrypt and libjade

Interactively in a Zulip server

http://formosa-crypto.org

libjade
• Open-source high-assurance cryptographic library (SUPERCOP-like C API)

• Current features:

• High-speed implementations for AMD64 (aka x86_64 or x64 + AVX2) and ARMv7 (32-bit)

• Cryptographic hash functions and XOFs (SHA-2, SHA-3, SHAKE)

• One-time authenticators and stream ciphers (poly1305, ChaCha, Salsa)

• Authenticated encryption (XSalsa20Poly1305)

• Curve 25519

• Postquantum KEM and Signature (ML-KEM, ML-DSA, SLH-DSA)

libjade
Jasmin code

(x86)

Jasmin code
(avx2)

Jasmin code
(arm)

Jasmin Compiler

Safety
check

CT
check

Spectre v1
check

certified
compilation

EasyCrypt
Algorithm

spec

Security
model

Functional
correctness

proof
Security

proof

asm code
(x86)

asm code
(avx2)

asm code
(arm)

EC code
(x86)

EC code
(avx2)

EC code
(arm) Claims

Use

Inspect

Under the hood

Formal verification goal
Algorithm

spec

Security
model

crypto proof

Safety
check

CT
check

Spectre
v1 Check

Jasmin
Code

certified
compilatio

n

asm Code

Machine-
checked

in EasyCrypt

Functional
correctness

No timing
leakage (*)

No leakage due
to Spectre v1 (*)

(*) in a formally defined (abstract) leakage model

e.g., ML-KEM
asm behaves like

Kyber jasmin

e.g., ML-KEM
spec

is a correct IND-
CCA secure

Formal verification goal

implementation
security

compliance/
Interoperability

Safety
check

CT
check

Spectre
v1 Check

Jasmin
Code

certified
compilatio

n

asm Code

e.g., ML-KEM
asm behaves like

Kyber jasmin

Functional
correctness

No timing
leakage (*)

No leakage due
to Spectre v1 (*)

(*) in a formally defined (abstract) leakage model

?
?

Algorithm
spec

Security
model

crypto proof

Machine-
checked

in EasyCrypt

e.g., ML-KEM
spec

is a correct IND-
CCA secure

Formal verification goal

Safety
check

CT
check

Spectre
v1 Check

Jasmin
Code

certified
compilatio

n

asm Code

Functional
correctness

No timing
leakage (*)

No leakage due
to Spectre v1 (*)

(*) in a formally defined (abstract) leakage model

Algorithm
spec

Security
model

crypto proof

Machine-
checked

in EasyCrypt
implementation

security

compliance/
Interoperability

Functional
Correctness
(interactive)

?

depends on Spec

e.g., ML-KEM
asm behaves like

Kyber jasmin

e.g., ML-KEM
spec

is a correct IND-
CCA secure

Formal verification goal

Safety
check

CT
check

Spectre
v1 Check

Jasmin
Code

certified
compilatio

n

asm Code

Functional
correctness

No timing
leakage (*)

No leakage due
to Spectre v1 (*)

(*) in a formally defined (abstract) leakage model

Algorithm
spec

Security
model

crypto proof

Machine-
checked

in EasyCrypt
implementation

security

compliance/
Interoperability

Functional
Correctness
(interactive)

Standard?

Other specs?
(e.g. HACSpec)

e.g., ML-KEM
asm behaves like

Kyber jasmin

e.g., ML-KEM
spec

is a correct IND-
CCA secure

Jasmin
Programming

Jasmin: Goals
• Empower programmers to deliver fast and formally verified assembly code

• Efficiency & verification-friendly source language

• Efficiency & provably property -checking/-preserving compiler
(safety, functional correctness, protection against timing attacks)

• Verification infrastructure (based on EasyCrypt):

• functional correctness wrt high-level spec

• provable security wrt to formal (computational) cryptographic model

Jasmin: Zero cost abstractions
• Things one wishes asm could offer:

• Variable names instead of registers

• Arrays: collections of variables

• Automatic stack management

• Readable loop structures

• (inlineable) function calls

• nice syntax and clever type checking

• Things one wishes asm could offer:

• Variable names instead of registers

• Arrays: collections of variables

• Automatic stack management

• Readable loop structures

• (inlineable) function calls

• nice syntax and clever type checking

Jasmin: Zero cost abstractions

Programmer knows what assembly is going
to look like: one-to-one instruction translation

We call this "asm in the head"
(qhasm inspiration)

Jasmin: per arch instruction set
• Common instructions

• nice syntax (same across architectures)

• All instructions

• available via instruction name

• Support for all word sizes

• No memory allocation

• caller allocates memory

• Common instructions

• nice syntax (same across architectures)

• All instructions

• available via instruction name

• Support for all word sizes

• No memory allocation

• caller allocates memory

Jasmin: per arch instruction set

Programmer responsible for all spilling

Compilation breaks if register
assignment not found.

Jasmin: per arch instruction set
• Internal function calls:

• arbitrary calling convention

• global reg allocation

• restricted pointers: stack regions

• External entry points

• standard ABI/calling convention

Jasmin: per arch instruction set
• Internal function calls:

• arbitrary calling convention

• global reg allocation

• restricted pointers: stack regions

• External entry points

• standard ABI/calling convention

Good documentation and error msgs ...

... are work in progress.

Jasmin: per arch instruction set
• Internal function calls:

• arbitrary calling convention

• global reg allocation

• restricted pointers: stack regions

• External entry points

• standard ABI/calling convention

Zulip server is a good friend!

Q&A log really helps other users/developers.

EasyCrypt
Verification

EasyCrypt
• Two languages: functional (define operators), imperative (implement algorithms)
• Logics to reason about properties of

• real values (probabilities), distributions, etc.
• functional programs (operators)
• imperative programs (probabilistic Hoare logic or pHL)
• relations between two imperative programs (probabilistic pHL or pRHL)

•These logics are interconnected:
• use logic A to discharge side-conditions of logic B proof steps
• prove claims in logic A using (a combination of) other logic(s)

(Prob) Hoare logic

• Classical Hoare triple based on two predicates

• Precondition: assumed in starting state

• Postcondition: ensured in final state

(Prob) Hoare logic

• Your usual Hoare triple based on two predicates

• Precondition: assumed in starting state

• Postcondition: ensured in final state

Initially: prove that some event is rare

• Classical Hoare triple based on two predicates

• Precondition: assumed in starting state

• Postcondition: ensured in final state

(Prob) Hoare logic

Very useful: prove that
procedures implement

convenient functional specs

(Prob) Hoare logic

• Your usual Hoare triple based on two predicates

• Precondition: assumed in starting state

• Postcondition: ensured in final state

e.g., Jasmin code implements inner product correctly

Very useful: prove that
procedures implement

convenient functional specs

(Prob) Relational Hoare logic

• Property that relates the behavior of two programs

• Precondition: relation between starting states

• Postcondition: relation between final states

(Prob) Relational Hoare logic

• Property that relates the behavior of two programs

• Precondition: relation between starting states

• Postcondition: relation between final states

In general: used to prove
that two programs are equivalent,

possibly up to bad.

(Prob) Relational Hoare logic

• Property that relates the behavior of two programs

• Precondition: relation between starting states

• Postcondition: relation between final states

Very useful: prove
that two implementations are equivalent.

spec vs implementation

(Prob) Relational Hoare logic

• Property that relates the behavior of two programs

• Precondition: relation between starting states

• Postcondition: relation between final states

implementation vs
optimized implementation

Very useful: prove
that two implementations are equivalent.

How does a proof in EC look like?
• Program/script

• Convince tool that claim holds

• Guiding it step by step to this
conclusion

• Using a set of rules/results
that it knows are correct

• Often relying on smt solver
which EasyCrypt trusts

Where we are

SHA3 (former Keccak)

• Security proof

• Indifferentiability
from RO (classical)

• Generic results for
Sponge

• Implementation

• AMD64

• AVX2

• ARMv7

• Functional correctness

• AMD64

• AVX2

• ARMv7

✅

✅

✅

✅

✅

✅

🚧

ML-KEM (former Kyber)

• Security proof

• IND-CCA in the ROM
(classical)

• Generic results for
Fujisaki-Okamoto
transform

• Implementation

• AMD64

• AVX2

• ARMv7

• Functional correctness

• AMD64

• AVX2

• ARMv7

✅

✅

✅

✅

✅

✅

🚧

ML-DSA (former Dilithium)

• Security proof

• UF-CMA in ROM
(classical)

• Generic results for
FS with aborts

• Implementation

• AMD64

• AVX2

• ARMv7

• Functional correctness

• AMD64

• AVX2

• ARMv7

✅

✅

✅

✅

🚧

🚧

🚧

SLH-DSA (former SPHINCS+)

• Security proof

• UF-CMA (classical)

• Generic results for
Hash-based
signatures

• Implementation

• AMD64

• AVX2

• ARMv7

• Functional correctness

• AMD64

• AVX2

• ARMv7

✅

✅

🚧

X-Wing (Hybrid KEM)

• Security proof

• IND-CCA in the
ROM (classical)

• Builds on ML-KEM,
x25519 and SHA3

• Implementation

• AMD64

• AVX2

• ARMv7

• Functional correctness

• AMD64

• AVX2

• ARMv7

🚧✅

✅

The End

Questions?

