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Context and Goals



• Take techniques from the study of programming languages such as: 

• Programming language design and compilation 

• Various approaches to program verification 

• Type systems for security 

• Interactive theorem provers 

• etc.

Different 
approaches 

tools 
technologies

Computer-Aided Cryptography



Computer-Aided Cryptography
• Apply them to (high-assurance) cryptography: 

• Domain-specific programming languages and compilers 
• Specification of crypto algorithms and protocols 
• Specification and analysis of security models 
• Formal verification of: 

• functional correctness 
• provable security 
• countermeasures against 

• side-channel attacks  
• micro-architectural attacks 

Different 
approaches 

tools 
technologies



Formosa Crypto
• Access to tools, examples and usage guides 

• Interact with developers and other users 

• Learn what has been done and ongoing work 

• Help understanding tools and solving problems 

• Ask for new features 

• Regular in person meetings: 

• Jasmin/EasyCrypt/libjade development 

• research projects around the tools 

• investigate new ideas, collaborations

formosa-crypto.org

Community 
around Jasmin, 

EasyCrypt and libjade

Interactively in a Zulip server

http://formosa-crypto.org


libjade
• Open-source high-assurance cryptographic library (SUPERCOP-like C API) 

• Current features: 

• High-speed implementations for AMD64 (aka x86_64 or x64 + AVX2) and ARMv7 (32-bit) 

• Cryptographic hash functions and XOFs (SHA-2, SHA-3, SHAKE) 

• One-time authenticators and stream ciphers (poly1305, ChaCha, Salsa) 

• Authenticated encryption (XSalsa20Poly1305) 

• Curve 25519 

• Postquantum KEM and Signature (ML-KEM, ML-DSA, SLH-DSA)
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Formal verification goal
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Formal verification goal
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Jasmin 
Programming



Jasmin: Goals
• Empower programmers to deliver fast and formally verified assembly code 

• Efficiency & verification-friendly source language 

• Efficiency & provably property -checking/-preserving compiler  
(safety, functional correctness, protection against timing attacks) 

• Verification infrastructure (based on EasyCrypt):  

• functional correctness wrt high-level spec 

• provable security wrt to formal (computational) cryptographic model



Jasmin: Zero cost abstractions
• Things one wishes asm could offer: 

• Variable names instead of registers 

• Arrays: collections of variables 

• Automatic stack management 

• Readable loop structures 

• (inlineable) function calls 

• nice syntax and clever type checking



• Things one wishes asm could offer: 

• Variable names instead of registers 

• Arrays: collections of variables 

• Automatic stack management 

• Readable loop structures 

• (inlineable) function calls 

• nice syntax and clever type checking

Jasmin: Zero cost abstractions

Programmer knows what assembly is going  
to look like: one-to-one instruction translation 

We call this "asm in the head" 
(qhasm inspiration)



Jasmin: per arch instruction set
• Common instructions 

• nice syntax (same across architectures) 

• All instructions  

• available via instruction name 

• Support for all word sizes 

• No memory allocation 

• caller allocates memory



• Common instructions 

• nice syntax (same across architectures) 

• All instructions  

• available via instruction name 

• Support for all word sizes 

• No memory allocation 

• caller allocates memory

Jasmin: per arch instruction set

Programmer responsible for all spilling 

Compilation breaks if register  
assignment not found.



Jasmin: per arch instruction set
• Internal function calls: 

• arbitrary calling convention 

• global reg allocation 

• restricted pointers: stack regions 

• External entry points 

• standard ABI/calling convention



Jasmin: per arch instruction set
• Internal function calls: 

• arbitrary calling convention 

• global reg allocation 

• restricted pointers: stack regions 

• External entry points 

• standard ABI/calling convention

Good documentation and error msgs ...

... are work in progress.



Jasmin: per arch instruction set
• Internal function calls: 

• arbitrary calling convention 

• global reg allocation 

• restricted pointers: stack regions 

• External entry points 

• standard ABI/calling convention

Zulip server is a good friend!

Q&A log really helps other users/developers.



EasyCrypt 
Verification



EasyCrypt
• Two languages: functional (define operators), imperative (implement algorithms) 
•  Logics to reason about properties of  

•  real values (probabilities), distributions, etc. 
•  functional programs (operators) 
•  imperative programs (probabilistic Hoare logic or pHL) 
•  relations between two imperative programs (probabilistic pHL or pRHL) 

•These logics are interconnected:  
•  use logic A to discharge side-conditions of logic B proof steps 
•  prove claims in logic A using (a combination of) other logic(s)



(Prob) Hoare logic

• Classical Hoare triple based on two predicates 

• Precondition: assumed in starting state 

• Postcondition: ensured in final state



(Prob) Hoare logic

• Your usual Hoare triple based on two predicates 

• Precondition: assumed in starting state 

• Postcondition: ensured in final state

Initially: prove that some event is rare



• Classical Hoare triple based on two predicates 

• Precondition: assumed in starting state 

• Postcondition: ensured in final state

(Prob) Hoare logic

Very useful: prove that  
procedures implement 

convenient functional specs



(Prob) Hoare logic

• Your usual Hoare triple based on two predicates 

• Precondition: assumed in starting state 

• Postcondition: ensured in final state

e.g., Jasmin code implements inner product correctly

Very useful: prove that  
procedures implement 

convenient functional specs



(Prob) Relational Hoare logic

• Property that relates the behavior of two programs 

• Precondition: relation between starting states 

• Postcondition: relation between final states



(Prob) Relational Hoare logic

• Property that relates the behavior of two programs 

• Precondition: relation between starting states 

• Postcondition: relation between final states

In general: used to prove  
that two programs are equivalent, 

possibly up to bad.



(Prob) Relational Hoare logic

• Property that relates the behavior of two programs 

• Precondition: relation between starting states 

• Postcondition: relation between final states

Very useful: prove  
that two implementations are equivalent.

spec vs implementation



(Prob) Relational Hoare logic

• Property that relates the behavior of two programs 

• Precondition: relation between starting states 

• Postcondition: relation between final states

implementation vs  
optimized implementation

Very useful: prove  
that two implementations are equivalent.



How does a proof in EC look like?
• Program/script 

• Convince tool that claim holds 

• Guiding it step by step to this 
conclusion 

• Using a set of rules/results  
that it knows are correct 

• Often relying on smt solver 
which EasyCrypt trusts



Where we are



SHA3 (former Keccak)

• Security proof 

• Indifferentiability 
from RO (classical) 

• Generic results for 
Sponge

• Implementation 

• AMD64 

• AVX2 

• ARMv7

• Functional correctness 

• AMD64 

• AVX2 

• ARMv7

✅

✅

✅

✅

✅

✅

🚧



ML-KEM (former Kyber)

• Security proof 

• IND-CCA in the ROM 
(classical) 

• Generic results for 
Fujisaki-Okamoto 
transform

• Implementation 

• AMD64 

• AVX2 

• ARMv7

• Functional correctness 

• AMD64 

• AVX2 

• ARMv7

✅

✅

✅

✅

✅

✅

🚧



ML-DSA (former Dilithium)

• Security proof 

• UF-CMA in ROM 
(classical) 

• Generic results for 
FS with aborts

• Implementation 

• AMD64 

• AVX2 

• ARMv7

• Functional correctness 

• AMD64 

• AVX2 

• ARMv7

✅

✅

✅

✅

🚧

🚧

🚧



SLH-DSA (former SPHINCS+)

• Security proof 

• UF-CMA (classical) 

• Generic results for 
Hash-based 
signatures

• Implementation 

• AMD64 

• AVX2 

• ARMv7

• Functional correctness 

• AMD64 

• AVX2 

• ARMv7

✅

✅

🚧



X-Wing (Hybrid KEM)

• Security proof 

• IND-CCA in the 
ROM (classical) 

• Builds on ML-KEM, 
x25519 and SHA3

• Implementation 

• AMD64 

• AVX2 

• ARMv7

• Functional correctness 

• AMD64 

• AVX2 

• ARMv7

🚧✅

✅



The End

Questions?


