Formal Verification of
Post-Quantum Cryptography

N Formosa-Crypto

RAIDOSA... EDEIC UMD DL e

mailto:mbb@fc.up.pt

Computer-Aided Cryptography

Take technigues from the study of programming languages such as:

 Programming language design and compilation

» \arious approaches to program verification

e [ype systems for security
* |nteractive theorem provers

s o

Different
approaches
tools
technologies

SoK: Computer-Aided Cryptography

Manuel Barbosa*, Gilles BartheH, Karthik Bha.rgavan§, Bruno Blanchet§, Cas Cremersﬂ, Kevin LiaoT”, Bryan Parno™**
*University of Porto (FCUP) and INESC TEC, TMax Planck Institute for Security & Privacy, 'IMDEA Software Institute,
SINRIA Paris, YCISPA Helmholtz Center for Information Security, ImrT, **Carnegie Mellon University

Abstract—Computer-aided cryptography is an active area of
research that develops and applies formal, machine-checkable
approaches to the design, analysis, and implementation of
cryptography. We present a cross-cutting systematization of
the computer-aided cryptography literature, focusing on three
main areas: (i) design-level security (both symbolic security and
computational security), (if) functional correctness and efficiency,
and (iii) implementation-level security (with a focus on digital
side-channel resistance). In each area, we first clarify the role
of computer-aided cryptography—how it can help and what the
caveats are—in addressing current challenges. We next present
a taxonomy of state-of-the-art tools, comparing their accuracy,
scope, trustworthiness, and usability. Then, we highlight their
main achievements, trade-offs, and research challenges. After
covering the three main areas, we present two case studies.

which are difficult to catch by code testing or auditing; ad-
hoc constant-time coding recipes for mitigating side-channel
attacks are tricky to implement, and yet may not cover the
whole gamut of leakage channels exposed in deployment.
Unfortunately, the current modus operandi—relying on a select
few cryptography experts armed with rudimentary tooling to
vouch for security and correctness—simply cannot keep pace
with the rate of innovation and development in the field.
Computer-aided cryptography, or CAC for short, is an active
area of research that aims to address these challenges. It en-
compasses formal, machine-checkable approaches to design-
ing, analyzing, and implementing cryptography; the variety of
tools available address different parts of the problem space.

Computer-Aided Cryptography

* Apply them to (high-assurance) cryptography:

 Domain-specific programming languages and compilers

e Specification of crypto algorithms and protocols

e Specification and analysis of security models

 Formal verification of:
e functional correctness
e provable security
e countermeasures against
e side-channel attacks

e micro-architectural attacks

Different
approaches
tools
technologies

SoK: Computer-Aided Cryptography

Manuel Barbosa*, Gilles BartheH, Karthik Bha.rgavan§, Bruno Blanchet§, Cas Cremersﬂ, Kevin LiaoT”, Bryan Parno™**
*University of Porto (FCUP) and INESC TEC, TMax Planck Institute for Security & Privacy, 'IMDEA Software Institute,
SINRIA Paris, YCISPA Helmholtz Center for Information Security, ImrT, **Carnegie Mellon University

Abstract—Computer-aided cryptography is an active area of
research that develops and applies formal, machine-checkable
approaches to the design, analysis, and implementation of
cryptography. We present a cross-cutting systematization of
the computer-aided cryptography literature, focusing on three
main areas: (i) design-level security (both symbolic security and
computational security), (if) functional correctness and efficiency,
and (iii) implementation-level security (with a focus on digital
side-channel resistance). In each area, we first clarify the role
of computer-aided cryptography—how it can help and what the
caveats are—in addressing current challenges. We next present
a taxonomy of state-of-the-art tools, comparing their accuracy,
scope, trustworthiness, and usability. Then, we highlight their
main achievements, trade-offs, and research challenges. After
covering the three main areas, we present two case studies.

which are difficult to catch by code testing or auditing; ad-
hoc constant-time coding recipes for mitigating side-channel
attacks are tricky to implement, and yet may not cover the
whole gamut of leakage channels exposed in deployment.
Unfortunately, the current modus operandi—relying on a select
few cryptography experts armed with rudimentary tooling to
vouch for security and correctness—simply cannot keep pace
with the rate of innovation and development in the field.
Computer-aided cryptography, or CAC for short, is an active
area of research that aims to address these challenges. It en-
compasses formal, machine-checkable approaches to design-
ing, analyzing, and implementing cryptography; the variety of
tools available address different parts of the problem space.

Community

FOrmOsa CryptO around Jasmin,

—asyCrypt and libjade

e Access to tools, examples and usage guides

News People Projects Publications Formosa Supporters

FORMOSA

* Interact with developers and other users ﬂ
CRYPTO

* Learn what has been done and ongoing work

» Help understanding tools and solving problems Projects

e EasyCrypt — Project Website — Git Repository
2 ASk fOr new fe atU €S EasyCrypt is a toolset for reasoning about relational properties of probabilistic computations with
adversarial code. Its main application is the construction and verification of game-based
cryptographic proofs.

* Regular in person meetings:

Jasmin — Project Website — Git Repository
Jasmin is a workbench for high-assurance and high-speed cryptography. Jasmin implementations

e Jasmi n/EasyC ryp’[/l | bJ ade develo Pme ali aim at being efficient, safe, correct, and secure.
Libjade — Project Website — Git Repository
* researc h p rOj eCtS aroun d th e tOO | S Libjade is a cryptographic library written in jasmin, with computer-verified proof of correctness

and security in EasyCrypt. The primary focus of libjade is to offer high-assurance software
implementations of post-quantum crypto primitives.

* Investigate new ideas, collaborations

Interactively in a Zulip server formosa-crypto.org

http://formosa-crypto.org

* Open-source high-assurance cryptographic library (SUPERCOP-like C API

e Current features:

* High-speed implementations for AMD64 (aka x86_64 or x64 + AVX2) and ARMv7 (32-bit

|
|

¢ Y f Y [
Ol |1 (/(A

o]
arm)

T104¢C

Claims

Algorithm

oPEC

S Ad correcCt
€ : 'l
o CUlT\ ‘ (

moae

1 i
{
|
!
{
{

asmin

\
~ode spec

A

///\

cCurit)
mode

Functional
Correctness
Interactive

Jasmin
Code

Algoritnm
SpeC

|
|
I
I
f

urity

depends on Spec

Functional
orrectness
Interactive

Jasmin

Algorithm
Code Yo

Spec

e.g., ML-KEM
Spec
. correct IND-

CCA secure

-’/ -’

Jasmin: Goals

 Empower programmers to deliver fast and formally veritied assembly code

e Efficiency & veritication-friendly source language

e Efficiency & provably property -checking/-preserving compiler

Jasmin: Zero cost abstractions

i?line fn init(reg u64 key nonce, reg u32 counter) — stack u32[16] ® Th|ngS one W|SheS aSim COU‘d Offer
inline int i;
stack u32[16] st;

eg w320 k e Variable names instead of registers
reg u n;

st[0] = 0x61707865;

st[1] = 0x3320646e; * Arrays: collections of variables

st[2] = 0x79622d32;
st[3] = 0x6b206574;

for i=0 to 8 { * Automatic stack management
k[i] = (u32)[key + 4xi];

}ﬁM+ﬂ:km;
 Readable loop structures

st[12] = counter;

for i=0 to 3 {

nli] = (u32)[nonce + 4xi]; * (Inlineable) function calls
}st[13+i] = nli];

roun 5 * nice syntax and clever type checking

Jasmin: Zero cost abstractions

i?line fn init(reg u64 key nonce, reg u32 counter) — stack u32[16] o Th|ngS one W|SheS aSim COU‘d Offer

inline int i;
stack u32[16] st;
reg u321] e Variable names instead of registers

1 Programmer knows what assembly IS going
to \ook Ike: one-to-one Instruction translation

stfd-+i] = K[l

} . I . 11 E
repweai \\/c call this "asm in the head"[®
[[] <]32§[[]1 (ghasm inspiration) S

}

rotun 5 * nice syntax and clever type checking

Jasmin: per arch instruction set

inline ; c
r (reg u256 r qx16) —> reg u256 e Common instructions

eg u2b56 t;
#VPSUB_16ul6(r, gx16);

L, o) * nice syntax (same across architectures)
r = #VPADD _16ul6(t, r);
return r;

e All Instructions

(reg ptr ul6[KYBER_N] rp) —> reg ptr ul6[KYBER_N]

reqg ué4 1i; : : . :
: e available via instruction name

reg ulée t;
reg ulé b;

1 = 0;

ahite' (s < KON e Support for all word sizes

« No memory allocation

e caller allocates memory

}

return rp;

}

Jasmin: per arch instruction set

inline

(reg U256 r qx16) -> reg U256 e Common instructions

reg u256 t;
r = #VPSUB_16u16(r, qx16);
= #VPSRA_16ul6(r, 15);

t - FUPAND 256(t, Gx16): * nice syntax (same across architectures)

Programmer responab\e for all spilling

e avallable via Ir 10N name

Compilation breaks if register
assignment not found.

| o O\ A [| VIJ AL L N A 0

fn
{

b & KYBER _Q;

i] = t;

e caller allocates memory

Jasmin: per arch instruction set

inline .
fn (reg u256 r qx16) -> reg u256 e |nternal function calls:

{
reg u256 t;

r = #VPSUB_16ul6(r, qx16);

t = #VPSRA_16ul6(r, 15); : : :

t = #VPAND_256(t, 16); o

C = #UPAND 2561t axI6) arbitrary calling convention
return r,

(reg ptr ul6[KYBER_N] rp) —> reg ptr ul6[KYBER_N] . g‘Oba‘ reg a“Ocathn

reg ué4 i,
reg ulée t;
o e restricted pointers: stack regions
ghile'(i < KYBER_N)
t = rpl(int)i]; :
t = KYBER0; * External entry points
> &e KYBER_O:
t += b;

e e standard ABl/calling convention

}

return rp;

}

Jasmin: per arch instruction set

inline

(reg u256 r qx16) > reg u256 e |nternal function calls:

reg u256 t;
= #VPSUB_16ul6(r, qgx16);
= #VPSRA_16ul6(r, 15);

t #VPAND256(t q16) ® Al - AN O OV ETNIO)]]

fn
{

Good documentation and error msgs ..

In q HIVUL T Uy Ul vV

e resfricted pnainters: stack regions
ﬁ;;é;:jf;”) - are work In progress. |

b & KYBER _Q;

PN = e standard ABI/calling convention

Jasmin: per arch instruction set

inline

(reg u256 r qx16) > reg u256 e |nternal function calls:

reg u256 t;
r = #VPSUB_16ul6(r, qx16);

fn
{

t = #VPSRA_16ul6(r, 15);

t = #VPAND 256(t, qx16); ® aliig= =11iTaYa aia ﬂtiOﬂ
r = #VPADD_16ul6(t, r);
return r;

} Zullp server S a gOOd friend!

n (reg ptr ulé [KYBER™R : o HIUUCLI Uy AalivoudatLiul

f
{

Q&A og really helos other users/developers.
="i " S EXEIdr Sy ponies
Pl :;” ; e standard ABl/calling convention

s
return rp;

}

FasyCrypt

* Two languages: functional (define operators), imperative (implement algorithms
* Logics to reason about properties of

» real values (probabillities), distributions, etc.

 functional programs (operators

(Prob) Hoare logic

module M = {
var vi :int

var v2 : int

proc f(x:int; y: int) = {

v1 « 0; » Classical Hoare triple based on two predicates
return x +v;

}

proc g(x:int) = {
vl < O;

}return 2+X; e Postcondition: ensured In final state

}.

 Precondition: assumed in starting state

lemmarelate : V x .y .v2, hoare[M.f : arg=(X,.y) A M.v2 = v2 — res=Xx + .y A M.v2=_v2].

(Prob) Hoare logic

module M = {
var v1 : int

var v2 : int

proc f(x:int; y: int) = {

v1 < 0; e Your usual Hoare triple based on two predicates
return x +vy;

} w :
pmcg(xjn, prove that some event Is rare

vl < 0O;

}return 2+X; e Postcondition: ensured In final state

1.

lemmarelate : V x .y .v2, hoare[M.f : arg=(Xx,.y) A M.v2 = v2 — res=Xx + .y A M.v2=_v2].

(Prob) Hoare logic

module M = {

var v1 :int
var v2 : int

proc f(x:int; y: int) = {
vl < 0;

retum Very usetul: prove that
orocedures Implement

proc g(x:int) = {

I CONVvenient functional specsl;.

}
.

oredicates

state

lemmarelate : V x .y .v2, hoare[M.f : arg=(Xx,.y) A M.v2 = v2 — res=Xx + .y A M.v2=_v2].

(Prob) Hoare logic

module M = {

var v1 :int
var v2 : int

proc f(x:int; y: int) = {
vl < 0;

retum Very usetul: prove that
orocedures Implement

proc g(x:int) = {

I CONVvenient functional specsl;.

}
1.

O predicates

state

e.Jg., Jasmm code mp\ements mner product correctly

Arg=(X,_y) A MLVZ = V

(Prob) Relational Hoare logic

module M = {
var vi1 : int
var v2 : int |

oroc f(xint: y: inf) = { * Property that relates the behavior of two programs
vl < 0;

return x + v,

} * Precondition: relation between starting states

proc g(x:int) = { - . :
v1 < 0; e Postcondition: relation between final states

return 2+Xx;

}
}.

equiv relate x : M.f ~ M.g : arg{1}=(x,x) A arg{2} = x = ={res}.

(Prob) Relational Hoare logic

module M = {

var v1 : int
var v2 : int

proc ity n In general: used to prove Skt
S (2t t\WO programs are equivalent, p states

T DOSSIPDly up to bad.

return 2+X;

fates

(Prob) Relational Hoare logic

module M = {

var vi : int

varv2:|'nt — e Prone nat relates the bhehavior of two programs
proc f(x:ir

return x Very usefu\ orove o

}

e tnat two Implementations are equivalent.

Vi e Postcondition: relation between tinal states

return 2xXx;

spec VS Implementation

(Prob) Relational Hoare logic

module M = {
var v1 : int
var v2 : int

e Prone Nai relates the behavior of two programs

proc f(x:ir E

return x Very usefu\ orove o
}

e tnat two Implementations are equivalent.

v1 < 0; e Postcondition: relation between final states

return 2xXx;

k implementation vs
opt|m|zed mp\ementatlon

How does a proof in EC look like”

2 PI’Ogl’am/SC”pt lemma add_corr (a b : W16.t) (a' b' : Fq) (asz bsz : int):

<= as7 <15 => 0 <= DSz < 15 =>
a' = inFq (W16.to_sint a) =>
: : b' = inFq (W16.to_sint b) =>
e Convince tool that claim holds bwl6 a asz =>
bwlé b bsz =>
inFg (W16.to_sint (a + b)) = a' + b' /\
bwlé (a + b) (max asz bsz + 1).

o Guiding it step by step to this S
pose bszb := 2”bsz.

CONClusIion move => /= .
have /= bounds _asz : 0 < aszb <= 2714
by split; [apply gt@_pow2
| move => x; rewrite /aszb; apply StdOrder.IntOrder.ler_weexpn2l

' h = bounds_bsz : 0 < bszb <= 2714
* Using a set of rules/results | Rereaon ol R pile s
: | move => x; rewrite /bszb; apply StdOrder.IntOrder.ler_weexpn2l
that |t kﬂOWS are COI’I’eCt rewrite !to_sintD_small => />; first by smt().

split; 1: by smt(inFqgD).
rewrite (Ring.IntID.exprS 2 (max asz bsz)); 1: by smt().
by smt(exp_max).

« Often relying on smt solver ged. B
which EasyCrypt trusts

SHA3 (former Keccak

e Security proof & Implementation ¢ Functional correctness

e |ndifferentiability « AMD64 &

ML-KEM (former Kyber

* Security proof » Implementation ¢ Functional correctness

* IND-CCA inthe ROM « AMD64 &

ML-DSA (former Dilithium

e Security proof & Implementation ¢ Functional correctness

 UF-CMA in ROM « AMD64 & « AMDG4

SLH-DSA (former SPHINCS+

e Security proof & Implementation ¢ Functional correctness

e UF-CMA (classical e AMDG4 & e AMDo4

X-Wing (Hybrid KEM

e Security proof & Implementation ¢ Functional correctness

* IND-CCA in the « AMDG4 « AMDG4

1he Ena

